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On Differentiable Exact Penalty Functions
C. VINANTE' AND S: PINTOS?

Cuﬁirﬁunicated By R. A. Tapia

Abstract. In this work, we study a differentiable exact penalty function
for solving twice continuously differentiable inequality constrained
optimization problems. Under certain assumptions on the parameters
of the penalty function, we show the equivalence of the stationary points
of this function and the Kuhn-Tucker points of the restricted problem
as well as their extreme points. Numerical experiments are presented
that corroborate the theory, and a rule is given for choosing the
parameters of the penalty function.

Key Words. Constrained optimization, nonlinear programming,
differential exact penalty functions, computational methods, augmented
Lagrangian functions. ;

1. Introduction

Considerable attention has been given in recent years to devising
methods for solving nonlinear programming problems via unconstrained
minimization techniques. One class of methods which has emerged as ver)
promising is the exact penalty function methods, which avoid the sequenc:
of unconstrained minimization problems characteristic of the augmented
Lagrangian methods. In Refs. 1-4, it is shown that, under suitable assump-
tions, it is possible to define a continuously differentiable function
V(x, A, € a), whose unconstrained minima yields the solution of the con-
strained problem and its associated multipliers. Moreover, this function can
also be used as a line search function for various direction finding algorithms,
One of such possibilities was studied in Ref. 5 in relation to a recursive
quadratic programming algorithm for equality constrained problems. For
the equality constrained problem

min f(x), subjectto . g(x)=0,
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ey ‘and Tolle {Ref 4)] studied the exact penalty function
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whcrcf R"-> R, g: R"> R™, DiPillo and Grippo (ReL. 2) | [see also Boggs

S(I A, €)= f(x)+A g(x)+(1/ )|l eI +|]M(?’f+?g).)ﬂz (1)

for two cases: TET = -

(i) “M= «./_I where I is the identity matrix of' appropriate
dimensions, so that if x is regular point, MVg is of rank m;

(i1) MZ\/EEVgF, so that M(x)Vg is invertible.

Bertsekas (Ref. 1) studied the same functions in relation to enlarging
the region of convergence of the Newton method and also showed that
there is a close relation between these functions and the class of penalty
functions of Fletcher. See also Tapia (Ref. 6).

Extensions to inequality constrained problems were studied by DiPillo
and Grippo (Ref. 3) by converting inequality constraints to equality con-
straints using squared slack variables and a special choice of the matrix
M (x), similar to case (ii) for the equality constrained case. In this work,
we study the exact differentiable penalty function with M =+val for the
inequality constrained problem. For this choice of the matrix M, MVg is
no longer invertible as in Ref. 3; therefore, some special conditions have
to be imposed on the parameters € and « of the penalty function to guarantee
the equivalence of its stationary points and the Kuhn-Tucker (K-T) points
of the constrained problem, as well as their local minima. This choice of
the matrix M is very convenient to implement the algorithms. Some pre-
liminary numerical experiments are also presented with a standard set of
problems. The results obtained are in agreement with those of Ref. 3 and
the rule suggested by Ref. 1 for choosing the relation €/ .

2. Exact Differentiable Penalty Function

The problem under consideration is the following nonlinear program-
ming problem:

(P) min f(x),
subjectto g(x)=0

where f: R" > R and g: R" > R". It is assumed, unless otherwise stated,
that the functions f and g are twice continuously differentiable on R".
We denote by L(x, A) the Lagrangian function
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An equivalent equahty constramed probiem tS gwcn by

(B) min f(x), g
sub]actto g,(x}-byJ*'D

involving the additional vector of squared slack variables y. Now, as pro-

~_posed in Ref. 1 and Ref. 2, the search for the solution of problem (B) can

be converted into the unconstrained minimization with respect to x, v, A of
the augmented function

S(x, y, ¢ a)=L(x A)+% aljy;"l'(l/f)z (g+yi)

+a[[thL||2+4;(AJyj}l:| - (3)

This minimization can be carried out by minimizing first with respect to y
and subsequently the resulting function with respect to (x, A). A straightfor-
ward calculation shows that

Vix, A, g a) :mjn S=L{x,A)+(1/e)[V.LI*—(1/e)|d]? (4)

where the components of the vector d are given by
;= —min[0, g;(x) + (eA;/2)(1+4aA;)]. (3}

It can be easily proved that, under the conditions of program (P), the
function V is continuously differentiable with respect to x and A with
gradients

V.Vix, A6, a@)=(1+2aVi,L)V,L+(2/€)V,g(g+d), (6)
ViV(x, A e, a)=(g+d)+2a[V.g]"V.L+8aAd, (7)
where

i"lzdiﬂgE)lt, )1.2, s ey )tm].

3. Relation between K-T Points and Stationary Points of V

In this section, we will establish the relations between the stationary
points of the function V and the Kuhn-Tucker points of problem (P).

Theorem 3.1.  Let (X, A) be a point satisfying the K-T necessary condi-
tions for problem (P). Then, (£ A) is a stationary point for the function
(x, A, € a).
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sl PR ?rndf_;-.-':At the point (%), we have o o s s S

and by (5) and (8) we obtain
R tAB L ) =0, Ad(%].% a)=0. (9)
Therefore, (6) and (7) with (8) and (9)-yie1d .
V.V(%A, €6 a)=0,
V.V(X A, 6 a)=0,
which proves the theorem. B
'. To prove the converse of Theorem 3.1 with M =+ I, we state first the
following lemmas.
Lemma 3.1. Let Q be an nx n positive-definite matrix, y = Qx with
Ixll=1, and M = min{x"Qx: ||x|| = 1}. Then,
max{iylii=1,2". 05 nl=k

where k=M /Vn.

Proof. Assume that |y <k, Vi Then, for x such that ||x|| =1, we have
x"Qe=xTy=Y Ixllyl<kX|x|=M
1 1
Therefore, a contradiction arises. g

Lemma 3.2. Let Q be an nxn positive-definite matrix and x(e) a
vector whose norm is an infinitesimal of order k for € = 0. Then, the vector
¥ = Qx(€) has at least one component y; whose absolute value is also an
infinitesimal of order k for e 0.

Proof. Applying the previous lemma to x(€)/| x|, there exists i such
that |y;|/|/ x|l = k. Then,

|yil = k] x(e)]
and, from properties of the norm,

Iyl=lQllix(e). (11)
From (10) and (11). the result follows. |

% (10}
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~Lemma 3.3. Let XxT bea compact subset of R" X R‘“ and assume

" (i)  the matrix {I+261V2 L) is POSI‘“’E dﬁﬁmte on X T

(i1} every feasible point in X is regular;
(i) € is mﬁmtemmal of higher order than a(€), that is, ltho{e{a) 0.

Then, there exists € = 0 such that, for € € (0, €], every statmnary p01"=
of V(x, A, €, a) satisfies the relation

g+d=0,""j=1,2,".., m
that is,

g +min[0, g+ (eA;/2)(1+4a;)]=0. 5 (12)

Proof. We will proceed by contradiction, assuming that the lemma is
false, that is, there exists a decreasing sequence {¢,} tending to zero, where
{x;, A.} are stationary points of V(x, A, €, ;) and do not satisfy (12). Since
X x T is compact, there is a subsequence of {x;, A} converging to some
(%, 1) € X x T. To simplify the notation, we will use the same nomenclature
{xx, Ax} for this converging subsequence. At each stationary point (x;, A )
of the function V, we have from (6) and (7)

V.L=—(2/ &) +2a,V%L]'V.g(g+4d), (13)
g+d=—2a,[(V,e)" i 2VDI[(V.L)" ! (2vDA)TT", o (14)
where

D= di&g[d!, dz, "y dm].

It can be easily shown that

2VDA =—(2/e)2D(g+d) —8a,vV DAA. = (13)
Substituting (15) and (13) in (14) yields R

g+d=4(a,/€)Q(g+d)+32a2DAA, - (16)
with

Q=[(Vg) (I +2a; Vi L) 'Vg+4D], & (17)

and this matrix, see Ref. 7, is positive definite in a neighborhood of (£, 1),
that is, for small values of ay. Since DAA = A°d, (16) can be expressed as

[1 _4(ﬂk/5k)o_32¢iﬁz](3+ d) =-32aiA’%, £ (18)
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and this expression is\valid for every (xg, A k') From (5), it follows that the -

i components of the vector g+d can be expressad as

g+d =maxgi(x), “(edu/D(AHad )]l (20)
As k-0, the matrix that multiplies g+d in (18) tends to 0. Then,

o there is 2 k sufficiently large and a corresponding pair (€, a) such that, for

k=K the points (x, A,) belong to the neighborhood of (% A) for which
the matrix —(Ek,/crk)I-E—Q-i-BakEkAz is positive definite. To establish the
contradiction, we need to prove that g+d =0 on the points of the sub-
sequence for k = k. The following cases will be considered.

o L) IE

g (x) = (A /2)(1 +dahy), vJ, (21)
then g+d = g and, from (19),

[—(en/da) ]+ Q(xx, A, &, i)} (g +d) =0.

Since |—(ex/4a; )]+ Q| is positive definite, g+d =0.
(b} If (21) is not true for every j, define the set

J={j: gi{x) <(eAup/2)(1 +4eyhy); A; = 0}

If J is not empty, i.e., there is at least one sequence {A;} not tending to
zero, the infinitesimal order of the vector g+ d is the same as the order of
€. Since ( is positive definite, by Lemma 3.2 the infinitesimal order of some
elements of the left-hand side vector in (19) is of the same order as e, but
the corresponding elements on the right-hand side of (19) are of the form
8aerr 5 g;(xy), which are of higher infinitesimal order. Therefore, a contra-
diction arises and g+d =0 for k= k

(c) If (21) is not true for every j and if J is empty, we partition the
vector g +d into two sets, set Y where the maximum in (20) is g;, and set
Z where the maximum is —(eA;/2)(1 +4aAy).

Considering the case where the infinitesimal order of g+ d is given by
an element of the set Y, fet it be g;(x;). By Lemma 3.1, there is at least one
component of the left-hand side vector; let it be the ith component, with
infinitesimal order equal to g(x). If i€ Y, the corresponding component
of the right-hand side vector is Scxkekhfkg,-(xk}, an infinitesimal of higher
order than g;(x), since [gi(x.)| =ig(x)l. If, on the other hand i€ Z, then
g;(x;) is of lower infinitesimal order then |eA | and Ba(EduIAdgi(x); in
both cases, a contradiction arises; therefore, g+d =0.

Following the same line of reasoning, based on comparing the
infinitesimal order of the components of the vectors in (20), see Ref. 7, we
can conclude that the vector g +d is zero on the points of the convergent
subsequence, for k= k, which contradicts the initial assumption, and the
lemma is proved. O
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Based on Lemma 3 33 we prove now the follnwmg theorem

Lo Lo s i e cr iy s T

[‘heorem 3 2 Let X X T be a compact subset of R" x R"‘ and 1et the
conditions of Lemma 3.3 be satisfied. Then, there exists é=0 and a corre-
.~ sponding @(€), such that, for e€(0, €], every stationary point (%, A) of
g V(x, A, € a) is a K-T point of problem (P).

Proof. At (% 1),

V.V(%X)=0," g(x)+d(z i e a)=0.
Then, (6) yields

V.L(% 1) =0; sy (22)
and from (7) we obtain Ad =0, which implies that

Ag=0. (23)
Since by definition d =0, we have

g(x)=0. (24)
Finally, for a such that

~1/4a<min(A;, A1, ..., Am),
we have

[14+4ar;]1=0. (25}
Ifj., # 0, then by (23) g;(¥) =0, which implies that

d; = —min{0, g;(X)+ (eA;/2)(1+4aA;)} =0. (26)
From (25) and (26), we have

A =0, ' (27)
From (22), (23), (24), (27), the proof follows. 13

The results of this section show that a should be taken small enough
so that 1+2aVZi L is positive definite on X x T, and that, for this a, €
should be such that the matrix —(e/4a)l+(V,g) (I +2aVi L)'V, g +4D,
where the diagonal matrix D is

D(j, j) = —min[0, g,(x) + (eA,/2)(1 +4a,)],

is positive definite on X x T. Under these conditions, the critical points of
V(x, A, €, a) are equivalent to the K-T points for problem (P).
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4. Local Optimality Results

In this section, we will establish local optimality results considering
second-order derivatives under the assumption that the functions f and g
are three times continuously differentiable. With these assumptions, the first
three terms in (4) are twice continuously differentiable. For the fourth term,
it can be proved (see Ref. 7) that, if (%, A) is a K-T point that satisfies the
property of strict complementarity, then there exists a neighborhood of the
point in which the function ||d||® is twice continuously differentiable.

Establishing the following convention to distinguish between active
and nonactive constraints:

I4(x) = {j: g(X) =0},
Iy(%)={j: g(x) # 0},
and defining the diagonal matrices

E(J;j):o; jE‘rAa

E(piy=1,22" Jelg; -

and G(j,j)=g;(x), we have
V.d=-V.gE,
V,d =—-(e/2)(I+8aA)E,

and :
Vi V=(VLLXI+2aViL)+(2/e)(V.g)(I-E)(V.g)', (28)
VieV=(V.g) (I +2aViL)- E(V.g)", (29)
Vi.V=2a(V,g)"V.g—(e/2)E—-8aG. (30)

We now prove the following theorems.

Theorem 4.1. Let f and g be three times continuously differentiable;
and let (x* A*) be a regular K-T point for problem (P) where strict
complementarity is satisfied and

xT(VLL(x* A")x>0, Vx>0, with Vg(x*)"x=0,je [.(x*). (31)

Then, there exists € and the corresponding a such that, for €< (0, €], the
function V(x, A, €, a) has a strict local minimum at (x*, A¥).

Proof. See Ref. 1, Proposition 2.1. .

We will prove now the converse of Theorem 4.1.
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; SR e ;
Theorem 4.2.  With the assumptions of Theorem 3.2 and the condition
of strict complementarity for the K-T points, there exists € and the corre-

sponding a such that, for ec (0, €], every local minimum (x*, A"} of

V(x, A, € a) that satisfies the second-order sufficient conditions is a local
minimum of problem (P) satisfying the second-order sufficient cond’iions

xTIVLL(x%,AN]x>0, - Vx#0,
with (V,g(x*)) 'x =0, j € L.(x*). (32)

Proof. Let é be defined by the conditions of Theorem 3.2, Then, if

V(x, A, €, @) has a local minimum at (x*, A¥), this point is also a K-T for

problem (P); and, since strict complementarity holds, we have only to show
that Vi, L(x*, A*) is positive on the tangent hyperplane. At (x*, A*), we have

(x A)T[VAV(x5 A1 A)> 0555 V(x, A) #0. (33)

e

Let x be an element of the tangent hyperplane, and let A be such that A, =0
for je Iz(x*). Expanding (33) and defining the vectors

g(x*)=(gi(x*)),  JjeL(x*), (34)

A= (), J € Is(x¥), (35a)

As={00 : je Li(x"), (35b)
we have '

(x, A)T[V2V(x* A*)])(x, A)
=(2/e)|(Viga) ' x[|?+ xT VL Lx+2a||Vi Lx + V. g |
+22,(V,2.)x —8aATGA — (e/2)| A, > > 0. (3n)

By the conditions of the theorem, the first, fourth, fifth, and sixth term: of
the right-hand side are zero. Therefore,

(x, )TV V(x*, A%)](x, A)
=2a ”vix_.[_,(x*’ A*)X'}'vgﬂ{x*, A*))\a”z
+xT[V2,L(x* A*)]x>0. i

Since the norm in the first term on the right is continuous, it is boun.i.
on the compact set and this term tends to zero with a Thun,
xT[VI,L(x* A*)]x cannot be negative. Furthermore, it cannot be (0,
since this would imply that either Vi L(x* A*)x=0 or that x .nd
V2. L(x* A*) are orthogonal. In the first case, taking A, =0 leads 1o 2
contradiction. The second case implies that Vi, L(x*, A*)x belonss 1o /2

=
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linear combination of the gradients of the active constraints, g;(x}, j € L.(x*).

~ Then, by choosing appropriate values for the vector A,, we can have
[VRL(x* A%)x+VgA7=0 and (xA)T[V?V(x*A*)](x,A)=0;

a contradiction arises, and the theorem is proved. L

It can also be proved (see Ref. 7) that, if in an interior K-T point
problem (P) has a global minimum, the function V(x, A, € a) has also a
global minimum. The converse result also holds with the conditions of
Theorems 3.2.

5. Numerical Experiments

In this section, we present the computational experiments done on four
problems studied by Ref. 3. These experiments were performed primarily
to study the algorithm in relation to the parameters € and a. The problems
were solved by means of a quasi-Newton algorithm using the DFP updating
formula and the stopping rule

06 AV = M) = xe and [ £0x, 1) = £(x, A)*]| S frors

however, in a more complete numerical study, the use of more efficient
unconstrained minimization procedures and a more modern and less scale-
dependent stopping rule should be considered.

For each example, we give the optimal values, the starting point, and
the, error (ERROR) in the optimal value of the function. In Tables 1-4,
correspondingly to each problem, we specify the number of linear searches
(LS) and the number of function evaluations (FE). The cases where the
algorithm failed to achieve the optimum were three: the function
V(x, A, g, @) was unbounded below (N1); the method did not converge
(N2); or the method converged to a different point (N3).

As the tables show, for each value of a, there is a range of values of
e for which the method failed to converge. For large values of ¢, we are
probably violating the conditions of Theorem 3.2, while for small values of
€ this behavior can be attributed to the ill-conditioning associated. The
results also show that, in most of the cases, there exist convergence for
0.01=¢/a =1 and that the best relation is €/ a =1, as suggested in Ref. 1.
In Ref. 3, similar pairs of optimal values for € and a are reported for the
first three problems; but, for the problem of eleven variables (Wong's
problem), a relation €/a = 10,000 was obtained. This limited set of results
suggests the feasibility of this exact penalty function for solving inequality
constrained problems. The possibility of its use as a line search function in
recursive quadratic programming algorithms is presently under investi-
gation.

i i i o |
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" Table 1. Results for Example 5.1. ~

o e idelieal ISe o FES | ERR

1 1 N3 s ey
0.1 115 84 1E-7
0.01° 11 75 2E-7
F00GY] Ul pERE NS 1070 2E-7
0.0001 11 263 3E-4
0.00001 16 2085 1E-7

0.1 1 N1 o T
0.1 ; 21 189 3JE-6
0.01 10 74 1IE-6
0.001 102 96 2E-6
0.0001 e 16 177 = 1E-7
0.00001 21 3117 . 1E-7
0.000001 N2 s i

0.01 0.1 N1 Lo A
0.01 11 127 2E—4
0.001 11 134 1E—-4
0.0001 13 415 1E-3
0.00001 N2 At e

0.001 0.01 N1 = 3%
0.001 11 124 1E~5
0.0001 - 11555 340 2E—-4
0.00001 11 969 1E—3
0.000001 N2 i Sa

0.0001 0.01 N1 S Al
0.001 6 67 2E—3
0.0001 11 194 1E-3
0.00001 11 949 2E-3

Example 5.1. (Fiacco and McCormick, Ref. 3)
Minimize f(X)=(1/3)(x;+1)’+x,,
subjectto  x;, =1,

X, =0. . |
Optimal values: ~ X*=(1,0), A*=(4, 1), f(X*)=8/3.
Starting point: X =(1.125,0.125), x =(0, 0).

Fal s L -~ M
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o s . 1 S N PORE. 1 ~es o i &
i =
. — £ T
1 1 N1 2 e o
0.1 25 RS 1667 1E-6 % L
0.01 F 25 294 1E—4 i g
. 0.001 34 731 4E-5
© 0.0001 56 2797 1E-7 i
0.00001 N2 e ad
0.1 1 N1 s e
0.1 18 140 4E-6
0.01 33 220 SE—6
-0.001 45 432 2E-6
0.0001 81 1671 1IE—6
0.00001 N2 = i
0.01 0.1 NI “sesr < e e
0.01 41 328 2E-4
0.001 49 592 4E—-4
0.0001 81 3511 4E-=5 !
0.00001 N2 s =2
0.001 0.1 N1 s o
0.01 33 274 6E—4
0.001 49 616 TJE-4
0.0001 73 2504 3JE—4
0.00001 N2
0.0001 0.01 N1 il o
0.001 73 1064 3E-4
0.0001 74 2071 E-3
0.00001 N2 _— £,

Example '5.2 (Rosen and Suzuki, Ref. 3)
Minimize  f(X) ==5(x;+ %) + 7(x;—3x3) + xi + x3+ 2x3+ x3,
subjectto  (xI)+x;—x,+x3—x,<8,

X2+ 2x3+ x3+2x3—x,— x,= 10,

2x x5+ x5+ 2%, —Xa— X4 =3.
Optimal values: - X*=(0,1,2, —1), A*=(1,0,2), f(X*) = —44.
Starting point: X =(0,0,0,0), A =(0, 0, 0).

s L TR LI AN Lt T Y ]



0 ERR et

6E=7+

BET : 3E-7
0.01 25 - 181 4E—8
0001 SN3 -
0.1 17 N1 i =
0.1 .14 140 1E-8
0.01 15EEEne 127 1IE-8
0.001 e b 115 8E—6
-~ 0.0001 15505 287 1E-8
0.00001 N2 — —
0.01 4.2 0220.01 17 203 2E-3
0.001 17 196 2E-5
~ 0.0001 HE S STy 2730 3E-3 - .
0.00001 N2 - —
0.001 0.1 N3 St P
- 0.01 9 RianeY T 82 1E-3
. 0.001 170886 151 8E-5
0.0001 16 230 3E-4
- 0.00001 33 3398 2E-4
- 0.000001 N2 i i
0.0001 001 N1~ - —
- 0.001 N3 = s
0.0001 20 3986 6E-3 .
0.00001 N2 = -

Example 5.3 (Beale, Ref. 3) :
Minimize  f(X)=—8x, —6X, — 4x;+2x2+2x2
+ x3+2x, %+ 2x,x; +9,
subject to X+ 2x3%; +2x; < 3,
x, =0,
x,=0,
Wx, =0,
Optimal values: X*=(4/3,7/9,4/9),
A*=(2/9,0,0,0), f(X*)=1/9.
Starting point; X =(0.5,0.5,0.5), A =(0,0, 0, 0).

MAanttarcanr s Aaramatarcs v .=00N1 £ .=00M
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~ Table4. Results for Example 54 .

Fln - SRR ey G TR
B2 0.01 B 6157 HhiE 886N 6E = 57
01 10 e N1 L o
e 1 49" 346 6E-5 =
0.1 : 65 538 6E—5
0.01 100 1635 6E-S
0.001 140 2577 3E-4
0.0001 N2 = =
0.01 1 N1 — =L
0.01 11 127 2JE-~4
0.001 11 134 1E—4
0.0001 13 415 1E-5
0.00001 . N2 g e
0.001 0.01 N1 Y .
- 0.001 - 11 124 1IE-5
0.0001 11 340 2E-4
0.00001 11 969 1E-3
0.000001 N2 — —
0.0001 0.01 NI L5 =3
0.001 ' 6 67 2E-3
0.0001 11 194 1E-3
0.00001 11 949 2E-3

Example 5.4 (Wong, Ref. 3)
Minimize f(X)=(x,—10)*+5(x;—12)*+ x3+3(x, - 11)°
+10x5+ 7x2+ x5 —4x5x,— 10x— 8x,,

subjectto  2x7+3x3+ x,+4xi+'5x55 127,

73,4 3%, + 10x2 4 x, — x5 =< 282,

23x,+ x3+6x; —8x, <192,

4x3+x3-3x,x,+2x3+5x5—11x,<0.
Optimal values: X*=(2.33050, 1.95137, —0.47754,

4.36573, —0.62448, 1.03813, 1.59423)
_ A*=(1.13972, 0, 0, 0.36861), f(X*) = 680.630.

Starting point: X =(1,2,0,4,1,1,1), A = (0,0, 0, 0).

Convergence parameters: X, = 0.0000001, f,,;= 0.001.
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