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Abstract

This paper presents an Artificial Neural Network(ANN)-based solution methodology for
modeling atmospheric corrosion processes from observed experimental values. and an ANN
model developed using the cited methodology for the prediction of the corrosion rate of
carbon steel in the context of the Iberoamerican Corrosion Map (MICAT) Project, which
includes seventy-two test sites in fourteen countries throughout ITheroamerica. The ANN
model exhibited superior performance in terms of goodness of fit (sum of square errors)
and residual distributions when compared against a classical regression model also
developed in the context of this study. and is expected to provide reasonable corrosion rates
for a variety of climatological and pollution conditions. Furthermore, the proposed
methodology holds promise to be an effective and efhicient tool for the construction of
analytical models associated with corrosion processes of other metals in the context of the
MICAT project. and. in general, in the modeling of corrosion phenomena from
experimental data. (© 1999 Elsevier Science Lid. All rights reserved.
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I. Introduction

The Iberoamerican Atmospheric Corrosion Map Project (MICAT-Mapa
Iberoamericano de Corrosion Atmosférica) was established as a resolution of the
Board of Directors of the V Centennial Science and Technology Program for
Development (CYTED) during a meeting in La Habana. Cuba in 1988, The
project, originally conceived at the Iberoamerican Corrosion Congress in
Maracaibo, Venczuela in 1986, includes seventy-two test sites exposed to the
atmosphere in fourteen countries throughout Iberoamerica, namely: Argentina,
Brasil, Chile, Colombia, Costa Rica. Cuba, Ecuador, Portugal., Peru, Mexico,
Venezuela, Panama, Spain, and Uruguay. Fig. | displays the network of test sites.
Along the lines of the ISOCORRAG. and ICP/UNECE projects. the MICAT
project has three main objectives: (i) construct the corrosion map for
Iberoamerica: (i) provide a better understanding of atmospheric corrosion
phenomena; and (ii1) identify mathematical models that could predict the
corrosion rate of metals in the atmosphere as a function of meteorological and
pollution wvariables for Iberoamerica. Regarding objective (ili), a significant
amount of work has been done in order to establish analytical expressions or
models for the behavior of metals in the atmosphere as a function of easily
determined variables (instead of long lasting experiments), The task at hand has
shown to be difficult, mainly because of the complexity (non-lineanties) associated
with the physicochemical processes responsible for atmospheric corrosion
phenomena.

Most of the predictive models used to date, are regression models that fit the
data available such that their mean square error is minimized. However, these
models have been shown to be. effective only in very restrictive arecas, and limited
to capture the nonlinear nature of the corrosion process. Hence, the continuous
search for mathematical models that could predict the atmospheric corrosion rate
for rather general climatic and contamination level conditions [1-3].

Artificial Neural Network (ANN) Modeling, in particular the one based on a
class of ANN called multilaver perceptron, has recently emerged as a promising
area in corrosion research [4]. because of the potential of the ANN to predict any
complex process with arbitrary precision provided its architecture and a set of
parameters are properly set [5]. This study presents the development of an ANN
based model for the prediction of the corrosion rate of carbon steel (Fe) in the
context ol the MICAT project (hence, considering a broad spectrum ol
climatological and pollution conditions). and evaluate its performance (mean
square error and residual distribution) against a classical regression model.

The remainder of the paper is structured as follows, Section 2 provides a
detailed description of the problem under consideration, while section 3 presents
the adopted solution methodology including an introduction to ANN and the
ANN modeling process. The analysis and discussion of the results obtained using
the developed ANN model and its relative performance when compared against a
regression model, are the subject of section 4. Conclusions and recommendations
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Fig. 1. Network ol test sites in the MICAT project
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Tahle 1
Learning dala set (Parl 1) with the prefixes A, B, €O, CR, CU, snd CH, denoling test sites in
Argenting, Brazil, Columbia, Costa Rica, Cuba and Chile, respectively

Test sile T RH TOW P SO, Cl- Fe

ADLI i4.1 T9.2 (hoxl BT a0 30.0 249
A2 13.9 TE 0.707 B3 5.0 40,2 54.%
A3 4.5 803 0,736 1226 A 0.2 .0}
AD22 17.1 T1-5 0482 a3 a0 TIRT 16.|
AN23 17.0 716 (.4494 1420 5.0 9.0 124
AL 26 T3.8 (666 2158 50 1.5 57
A3 221 4.7 633 720 5.0 .3 33
A2 20.0 403 (097 111 a0 1.5 4.5
A3 8.3 0.8 . 041} 03 A0 I.5 ih
ADS) 20 hER. (307 il4 50 in2 T4
ADGI 17.0 715 0.593 1178 6.2 5 253
BTl 1.5 T35 (452 247 (& L K fh
BO12 Y 749 0482 Li67 L3 74 1.5
BO13 212 4.6 0452 G 1.7 | .6 131
Rl E R B3 482 b122 a8 K.h 52.5
Bo22 2249 21.1 0,482 1471 2.7 6,7 47.2
RO M5 172 (.582 605 9.5 359.8 | 56
B032 24.5 8.6 582 945 52 174.7 194.6
JETIEY 0 127 0,579 G0 40.4 4.4 987
B4z 215 7.0 0.57% 876 59.1 0.7 161.2
BRG] 9.5 4.9 0, fds [ Hr 28.0 1.5 14.6
BOA2 19.6 Th.0 (1.64%8 1910 280 1.5 234
BOG3 9.4 752 01.64%8 1034 8.0 1.5 242
BOT1 2001 1 1,598 | 305 46.5 13.9 127.1
ROT3 0.2 Eid 01,598 [229 26.0 13.7 751
ROs] 26.1 817 682 23195 a0 1.5 194
Bl 204 72.0 (r.443 [ 40 5.0 1.5 129
C02 1.5 8.0 (1,466 940 14.2 4 36
CO13 28.2 87.1 0.976 G40 E9 64,5 540
co22 .4 BY.5 (. 500 [ Bk 5.0 1.5 I7.7
CO23 14.2 734 (1800 [ BiH) 50 1.5 9.6
CR3I 14 BH.3 ().83% 77 8.2 25 4 3
CR4| 189 814 1695 845 4.2 15.5 [ 6.6
CLIT1 252 705 (.468 | 541 37 15.8 360
CL2 254 794 1468 | 33 365 1ok 264
Cul3 253 794 1,468 1447 19.8 109 29.0
CL31 239 &1.0 0.571 |48k 16.0 12.3 325
cun 23.9 #®1.0 371 |44 153 4.2 34
CHII 14.2 T1.0 (130 355 210 4.4 03
CHI2 142 8.3 (ri72 367 179 4.2 44.1
CH41 122 £2.0 (1.686 (294 639 14.3 167.2

CH351 -3 85.0 0.264 14 4.5 14.2 4.1
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Learning data set (Purt 11) with the prefixes EC, E. M, und PA, denoting test sites in Ecuador, Spam.
Mexico, and Panama, respectively

Test site r KH TOW P 50, 2 Fe

EC12 269 8221 (0.661 635 2.7 1.3 226
EC2I 129 6.0 0.409 554 1.0 0.4 7.7
EC3I 230 81O 0,776 Bl 3.0 58.4 66, |
EON 12.0 8.8 0,384 652 16.2 1.5 19.3
EOL3 1.1 62.7 0.241 134 16.2 | 19.7
E02] 13.0 62.8 0416 i 38 39 12.6
E022 13.0 62.8 0416 159 8.9 i 10,8
E023 13.0 62.8 0416 KR 6.3 39 10.6
E031 16.8 65.1 0170 443 3.6 s 179
E033 15.7 655 0,156 635 148 A | 18,1
E04] 18.1 652 0.390 554 8.3 [.5 20.3
E042 17.0 628 0.302 521 57 1.5 19.4
E043 172 61.9 0316 T4 19 i.5 210
E031 16.3 59.3 0.151 416 10.3 I.5 12.3
E033 15.6 57.5 0.274 26y 28 1.5 fi.4
El6l 16.49 115 0.369 1828 38.1 11.6 274
E0n2 15.8 65.1 0314 1704 34.7 TEIE] 29.6
El63 15.1 a9.6 0.244 1312 45.7 282 28.1
EOTI 14.3 9.0 0334 271 4.1 14 14.1
E072 1.0 770 0450 510 iz 0.2 12.8
E073 108 4.0 .447 451 3.0 8.7 18.2
E0&1 8.8 7240 . 1 TR 9.1 1.8 13
Elg2 6.9 72100 0, 100 624 8.9 1.6 i6
EO%3 78 720 0. 100 6GRI 9.0 1.7 48
MOl 16.0 2.0 0.265 747 156 1.5 154
Mo12 15.2 64.5 (.28R 747 5 1.5 .0
MOIL3 5.6 63.2 0.277 747 176 1.5 5.1
MO22 210 56.0 0.212 1724 9.9 1.5 1.4
MO23 210 S0 0,200 1372 7.1 1.3 137
M4 2E.0 8.0 0. 564 534 6.5 44 226
Mi42 27.0 7.0 0.38] 792 15.2 229 248
M3 250 733 (L5370 a8s 7.2 14.0 18.7
PALl 265 69.2 {1538 1686 38.5 4.8 25.6
PAIZ 272 T3 0.562 1739 2000 8.5 23.0
PALZ 27.1 74.0 (.588 1387 1.0 b6 283
PA2I 27.1 T35 0.620 3815 63.0 110 125.0
PA22 273 765 (.63 4656 50.5 8.7 93.3
PA23 69 75.5 0.691 322 28.7 20.1 113.7
PA32 272 68.7 0.568 2082 203 27 14.2
PA33 273 Tl (0. 580 217 9.1 244 20.1
PA4I 271 65.3 0.531 2427 13.7 4.5 23.0
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of areas worthy of Tuture research efforts in the modeling of corrosion processes
using ANN are also included.

2. Problem definition

The problem of interest here corresponds to the identification of a model lor
the prediction of atmospheric corrosion of a given metal in terms of
metereochemical variables in the context of the MICAT project. Specifically, the
model is expected to provide a prediction of the corrosion rate ol carbon steel (Fe
in pm/vear) as a function of the time of wetness (TOW), chloride deposition rate
(C1™ in mg €1~ d), sulfate deposition rate (SO- in mg SO-/m” d). relative humidity
(RH in %). precipitation (£ in mm), and temperature (T in “C), Furthermore, the
model must be constructed considering the actual values of the corrosion rate of
the carbon steel and the corresponding metercochemical vanables at test stations
throughout Iberoamerica (Tables 1-3).

Mathematically. the problem under investigation is one of function estimation
and may be stated as follows: given a set of n observations of metereochemical
variables and the corresponding observed corrosion rate values, denoted by x;, f.

Takle 3
Learnig duta set (Part H1) with the prefixes PA, PE, PO, U, and ¥, denoting test sites in Panan,
Peru, Portugal, Urnguay and Venezueli, respectively

Test site T RH TOW F 50, Cl Fi
PA42 6.9 L (1. 560 2210 6.9 9.4 209
PA43 274 A (L.579 2123 19 s 23.2
PE24 19.1 #6.0 0.837 14 176 a4 35.2
PE32 L¥.H X135 (. 761 13 289 19.8 4.0
PE41 6.4 37.40 (L.003 T 3.0 1.5 15.0
PEA2 17 333 (1.003 Y 50 1.5 16.5
PE6I 254 84.0 1. 50K 1523 3.0 .5 15.7
PEA2 25K B2y [, UK 1h5h 3.0 |5 12.9
PO 159 62.1 0.379 1129 8.2 1614 TRY
P02 L 564 D.315 1129 6h1.2 826 1064
PO 172 7.3 0.351 [ ol hY 2L
PO32 16,1 6.0 (0,350 H85 7.2 51 24.5
PO33 174 724 (0. 4000 685 71 6.1 00
vl 16.8 73.5 0. 586 1185 1.0 R 8.2
Lozl 7.1 T6.2 0.479 1036 6.3 76 TG
o4 -23 1,0 0334 473 32 2 S0
Vil 277 780 D49 Rl .6 731 b1
Vo2l 280 T4.5 0462 31 23 24.3 209
Vi 26,0 7.1 0.571 in2 39 2.0 16.6
b LR 28.1 74.2 0.427 344 2.5 23.7 151
Vil 217 75.0 0513 U853 1.0 5.8 230

Vil 265 4.0 XG2S ROT 1.4 2.4 33
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Tahle 4

Validation data set

Test site T RH TOW r S0 Cl e
Al | 5.0 M6 0114 35 5.0 1.5 4.6
AN52 —3.1 w0 0276 114 5.0 .2 159
BO23 2340 .4 0,482 1444 4.5 5.2 48.5
BO72 23.2 §0.0 0,598 1152 KER 4.2 6l.3
Co 276 B7.0 0,971 a40 1.7 43.7 159
CRI 274 L2 0,562 15498 - 45.2 616
CL132 239 B1.0 (.57 14588 5.9 5.9 28.6
ECI1 26.1 1.4 0.554 036 4.2 1.5 19.5
En32 159 fi3.0 0,168 705 1.6 4.3 16.1
ED52 15.8 7.7 0,126 239 5.4 1.5 L]
M021 210 56.0 0,190 1352 6.7 1.5 15.2
PAlL 272 LA 0,559 2593 219 T4 257
PE3I 19.2 B5.0 0.761 13 28.9 19.8 215
PES2 12.2 (7.0 0.325 792 0.0 0.0 1.7
Lo3l 17.3 801 LI 15315 0.7 3.0 14.0
VO3l 26.5 7.0 05370 filkE 1.6 231 53.0

with i = | ... m find fi(x) such that Z7_,( fx;) —f ) is minimized wherein, f(X) 18
a function (model) providing the corrosion rate of carbon steel (Fe). and X is a
vector of the metereochemical variables: TOW, Cl17, SO., RH., P, T.

3. Solution methodology

The proposed solution methodology is based on the use of Artificial Neural
Networks (ANN), specifically the so called multilayver perceptron model. This
model is an universal approximator that is able to predict any sampled process
with arbitrary precision provided its architecture and a set of parameters are
properly established. This section, after presenting an introduction to ANN,

Tahble 3
Test data sel

Test site T H TOW P S50 1™ Fe

AD32 20.9 [ER. 0.631 2624 5.0 1.5 5.8
ADS3 =2, Hd.5 (.295 240 5.0 0.2 41.1
BO33 24.2 770 0.582 Th 44 167.7 128 .4
cO2l 4.1 R4 (1K (hIL 3.0 1.5 13.6
CR21 25.3 H8.4 0,763 3531 4.7 1358.1 3715
CH2J 14.0 82.0 0.762 403 18.7 8.4 3535
E0l2 L6 64.5 0.271 495 16.2 1.5 225
PE5I 12.2 67.0 0.325 63 0.0 0.0 Lo

Vo2l 27, 7h.6 0.496 263 42 BT 2329
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discusses the ANN-based modeling process carried out in this study and the
construction, for comparison purposes, of a hinear regression model along the
lines of those reported in the literature for the MICAT project |7].

3.1, Introduction 10 artificial newral nerworks

These biologically inspired models have found applications in many different
areas such as. classification of data, pattern recognition, clustering analysis, and
function approximation. This section provides an introduction to an ANN model
called multilayer (three layer) perceptron used in function approximation tasks
such as the one faced in this study. A more detailed discussion on other ANN
models and applications may be found elsewhere [6]. The introduction to the
ANN model under consideration (Fig. 3), is given in terms of basic definitions
(artificial neurons, links. layers, weights, threshold, activation function),
architecture, and learning process,

i.1.1. Basic elements

The basic processing elements are the so-called artificial neurons. With reference
to Fig. 2, an artificial newron basically evaluates an activation function taking as
argument a weighted sum of its inputs. Commonly used activation functions are
the logistic functions, an example of a logistic function is given by Eq. (1); note
that the output is limited to values in the interval [0, 1] and in general, the output
data must be subject to a normalization process.

I
The neurons are arranged in layers (Fig. 3), and there are three different layers,
namely. input, hidden, and output layers. There are some ‘special’ neurons, the
ones at the mput layer and the bias neurons, that have as output their
corresponding inputs. The hias mewrons are introduced to facilitate the
consideration of the rlreshold value associated with each neuron. Furthermore. the
neurons are connected among them through channels called /finks, with the

N‘
D——"—' 0=qg (21 w-8)

Fig. 2. Mustration of the information processing abilivy of an artificial neuron,
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L+l Hel o

9 Op,

9 Opo

Fig. 3, Schematic of the three-laver perceptron ANN model.

strength of the connections specified as real numbers called weights. The links
usually connect neurons in consecutive lavers from left to right,
The output of the ANN model can be written as:

Ouly) = GIW x (G[V < 1,])] (2)

where 1, denotes the input values, 1" and W the weight matrices between the input
layer and hidden layer, and the hidden layer and output layer, respectively, The
symbol (¢ represents the application of the logistic function to each of the
elements ol its argument.

3.1.2. Architecture

It can be shown that a threelayer perceptron (the one used in this
investigation) is, for function approximation purposes, as capable as ANN with
higher number ol hidden layers. and can estimate a [function with arbitrary
precision provided the number of neurons in the hidden layers and the weights are
properly set [5]. As a result. our attention will be restricted to three-layer
perceptrons,

The number of neurons in the input and output layers are established by the
number of input, and output variable(s) of the function(s) to be estimated. The
number of neurons in the hidden layer can be settled through different criteria; for
example, limiting the number of parameters of the model (weights) to be a
fraction of the total number of data points available to the learning process (to be
discussed next).

3.1.3. Learning
This process makes relerence to the dentification of a set of weights that, lor a




B 8. Pintox et al, | Corrosion Scrence 42 { XNK ) 35-32

given architecture, minimize the sum of the square of the model errors (Eq. (3)):
the errors represent the difference between the ANN model output values and the
observed [uncuion values.

min Error(V, W) = Eu{},,,- - f,'||3 (3)

The nonlinear nature ol the aforementioned error function makes it nonconvex
and prone to have local optima, The most common ANN learning algorithm 1s a
gradient based optimization procedure called Backpropagation [6]. which
essentially, modifies the weights (from a starting set of weights) by moving in the
direction contrary to the error function gradient thus ensuring a lower error value
(Eq. (3)). The cited algorithm. as any other gradient-based optimization
procedure. is limited by the fact that it is sensitive to the set of initial weights, and
it may get trapped in local optima.

3.2. ANN modeling

The neural network modeling process used in this study may be described in
four stages: (1) preprocessing of the original data set (identification of outhers); (1)
partitioning of the preprocessed data set into learning, validation and test sets: (i)
ANN model architecture setting, learning and testing; and (iv) implementation.

3.2.1. Preprocessing of the original data set

Under the assumption of the continuous nature of the corrosion process, two
test sites with similar metereochemical values should have similar corrosion rates.
In order to detect data values violating this premise, a cluster analysis was
conducted on the metereochemical variable values of the eriginal data set. In
general, observations within a cluster, with corrosion rates atypical for a given
cluster, were eliminated. In addition, since the inpul variables were so different in
ranges, in order to facilitate the learning process (to be explained shortly) the
inputl variables were scaled using the lollowing transformation: ¥=(xv—pu)/e, with

Table 6
Fundamental statistical information associated with the data set used for the construction of the ANN
model

Vanahle Minimum Maximum Mean 8.D.

T —3.100 28.200 19.202 7.024
RH 33300 21.100 73238 10.267
TOW 0,003 {1.976 0479 (1,208
P 13000 4656000 1093.423 #3236
504 (3,000 Gl 200 13930 14,928
ol |y (3,00 355 800 [9.927 42.623

Fe [.000 371,500 16212 46.304
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v, and ¥ denoting, an input variable and scaled input varnable, respectively. and
the symbols i and & representing the mean and standard deviation among the
observed values for the metereochemical variables (Table 6),

2.2.2. Partitioning the data set

The resulung data from the preprocessing process conducted in the previous
step, are divided into three disjoint data sets: learning, validation and test data
sets. The learning data set is the one used to train (specify the weights) of the
ANN. The validation data set is the one used in conjunction with the learning
data set to identify when to stop the learning process so that the resulting ANN
exhibits good generalization properties. The fest data set allows the assessment of
the prediction capabilities of the ANN model. The ANN is evaluated using as
performance criteria mean square error and residual distributions over learning
and test data sets. The data set was sorted by country and test site and the
learning, validation, and test data were constructed using an stratified sampling
procedure. The selected sampling procedure aims to data sets that include
observations of all countries and test sites. The number of observations per data
set were assigned to be one hundred-and-five, sixteen and nine, for the learning,
validation and test sets, respectively.

3.2.3. ANN madel architecture setting

Since the nodes for the input and output laver are set by the number of
metereochemical variables (six) and the number of variables 1o be predicted (one),
only the number of hidden neurons needs to be establish before the ANN model
architecture is completed. In this work the number of hidden neurons was
established so that the number of parameters (weights) during the learning process
is a [raction (approximately 40%) of the number of observations available in the
learming data set. Hence avoiding the possibility of the ANN model overfitting the
data.

3.2.4. Learning and testing

The learning process was conducted using as optimization procedure the
standard Backpropagation algorithm, with weight updates each time the complete
learnming data set was considered. The initial set of weights were obtained using
Montecarlo optimization, hence reducing the possibility of getting trapped in local
optima. For a given set of initial weights, the learning process was stopped when
the mean square error in the validation data ser started to grow for additional
number of iterations in the optimization procedure. The “best” set of weights was
selected as the one with the lowest possible mean square error and relative good
performance on the validation data test. After the conclusion of the ANN
learning process the resulting model was evaluated in terms of its mean square
error and residual distributions over the test data set, and its relative performance
when compared against a regression model with the same structure of one
reported in the literature [7] created using the learning and validation data sets.
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3.2.5. Implementation

The solution methodology i1s implemented using a combmation of both
commercial and academic software. The Statistical Analysis System (SAS) [B] was
used, lor the cluster analysis (PROC CLUSTER) in the preprocessing ol the
original data set. for the stratified sampling conducted in the partitioning of the
data set. and in the construction of the regression model (PROC REG) in the
testing phase of the ANN modeling process. The Artificial Neural Network
models were created with the assistance of the Stuttgart Neural Network
Simulator (SNNS) [9].

4. Results and discussion

This section presents an Artficial Neural Network (ANN) model for the
prediction ol the corrosion rate of carbon steel (Fe) as a funcuon ol relevant
metercochemical variables (TOW, Cl-, 8O-, RH. P, and T) in the context of the
MICAT project, and discusses the performance exhibited by the ANN model in
terms of goodness of fit (mean square error), and residual distributions for
training and testing data sets. In addition, the corresponding results for a linear
regression model, also developed in the context of this study, are included for
COMPATISON PUrposes.

The ANN maodel obtained following the methodology described in section 3 1s
illustrated in Fig. 4, and its output can be expressed in matrix form as specified by
Eq. (2), with V]H x ({ + 1)] and WO x (H + 1)] given by the following weight

TEMP

HR

TOW

PREC

s0,

cr

Fig. 4. Artificial Neural Network model,
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malrices

0,0745 =0.9768 (L9852 04833 =0.7987 10064 30598
—3.3410 24293 1.8049  2.3564 31194 —4.6681 —32227
V=|04417 —19811 1.5018 —0.7849 —0.0004 -=24218 2.0833
—0.4767 1.9384 1.2480  (.1868 1.1675 2.6001 1.8650
-24737 11378 —-0.1231 1.608] (1.6292 —0.1397 3.2680

W=[-03466 31603 00620 —1.4238 29312 —3.1031]

The ANN model captures well-known nonlinear interactions between the
corrosion rate and some of the most significant metereochemical vanables such as
TOW, 80, and C1, as it is illustrated in Figs. 5-8, In general, cach figure depicts
the corrosion behavior as a function of one or more of the metereochemical
variahles: the rest of the variables are considered either constant (at their mean
values) or. if they are highly correlated with the variable(s) under consideration. at
the values specified by simple linear models. The climatological variables are
highly correlated as shown in Table 7. which displays the correlation value and
the probability of a null correlation for the different pairs of clhimatological
vanables.

Figs. 5 and 6 shows the behavior of the corrosion rate with respect to chloride
deposition rate (Cl), and sulfate deposition rate (SOs), respectively. In both
cases, as expected, the corrosion rate increases with higher values of CI” and S0,
respectively, with the former exhibiting a higher nonlinear interaction with the

400 |-
E
=
— 300
w
=1
X 200
=
o
S 100f
4’
vl
o
O

ﬂ R SN U TR R NNANY NN NN VRN N GUNGY WOV WAL SN G RIS RN S T SN T U T TSN [ SR T N AN |
o 50 [e]e 150 200 250 300

Cl (mg CI'/m2.d)

Fig. 3. Corrosion rate of carbon steel (Fe) vs chloride deposition rate €17,
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Fig. 6. Corrosion rate of carbon steel (I'¢) vs sulfate deposition rate S0,

variable of interest than the latter. Incidently, the behavior of the corrosion rate
with respect to chloride deposition rate (C17) is consistent with worldwide data
sets associated with pure marine atmospheres (not contaminated with 50-) [10].
Furthermore. Fig. 7 depicts the ANN model response surface as a function of
Cl™ and time of wetness TOW having a constant S0, (mean value) and simple
linear regression models for the rest of the varables; specifically, 7= 12.45 + 15.59

E
1
= aro
[FV]
‘}_
&
253
=
o
¥y ]
o 135
o©=
=
o
i |
8

Fig. 7. Corrosion rate of carhon steel (Fe} as o function of chloride deposition rate O and time ol
welness ( TOW),
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Fig. 8. Corrosion rate of carbon steel (Fe) as a function of sulfite deposition rate S0, and time of
weiness (TOW),

w TOW, RH = 5573 + 3588 x TOW, and F = 241.00 + 1813.00 x TOW .
Similarly, the ANN model response surface as a function of TOW and SO- is
shown in Fig. 8, with ClI™ assumed constant (mean value) and the aforementioned
linear regression models establishing the values for the variables T, RH. and P. In
both instances the figures show significant nonlinear interactions among the
considered varables.

The ANN model shows superior fitting (learning and validation data sets)
capabilities exhibiting a mean square error (MSE) and (R?) coeflicient equal to
140.45 and 0.90, respectively, which represents a 65% (27%) lower (higher) value
than those provided by a quadratic regression model constructed as part of this
study (similar to the one reported by Morcillo [7], with a 95% degree of

Table 7
Correlation values {lop) and probability of a null correlation (botlom) among the cimatological van-
abley

I RH TOW I
T 1.00 018 0.47 44
(1,101 .05 0.0 .00
RH 0.18 1.00 (.69 0.32
0.035 {0,100 0,00 0
TOW 0.47 0.69 1.00 0.44
RN .00 (.00 {1430
P 0.44 0.32 0.45 100

(0.0 (.00 (.00 R
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significance level regarding the linear coefficients. The linear regression model
obtained is shown in Eq. (4).

Fe = by +Cl () 4+ b x P+ b3 x RH) 4+ by x TOW x 50 (4)

with by = 6.8124, by =—1.6907, b, =0.0004, b;=0.0242, and hy=2.2817.

In addition. the residuals of the ANN model are smaller and more
symmetrically distributed when compared with its regression model counterpart
(Fig. 9).

The prediction performance of the ANN model over a set of data not used
during the training process was also superior to the one exhibited by the
regression analysis model. The MSE over the validation data provided by the
ANN model was approximately four times smaller that the one provided by the
linear regression model (220 vs 1082). Within this data set, the minimum and
maximum error for the ANN maodel (Regression Model) were —11.9 and 32.9
(=9.5 and BK.7), respectively: note again the more symmetric distribution of the
errors for the ANN model.

un

. Conclusions

I. An Artficial Neural Network-based methodology for the modeling of
atmospheric corrosion is described. The methodology involves preprocessing
and partitioning of the experimental data set, ANN model architecture setting.
construction and testing of the ANN model. and implementation.

Using the proposed solution methodology an ANN model was constructed and
evaluated using experimental data associated with the corrosion rate of carbon
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40¢
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ANN MODEL REGRESSION ANALYSIS
MODEL

Fig. 9, Residual distributions for the ANN and regression analysis models
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steel (Fe) as a function of the time of wetness (TOW). chloride deposition rate
(C17), sulfate deposition rate (SO,), relative humidity (RH), precipitation (P ).
and temperature (7). in the context of the MICAT project. The ANN model (1)
reproduced some well-known nonlinear interactions among the variables of
interest, and, (i) provided excellent results regarding goodness of fit (MSE) and
residual distributions on training and testing data sets.
Specifically, regarding item (i) the application of the ANN model on the
training and validation (testing) data sets resulted in a MSE equal to 140 (220).
which, was 63% (80%) lower than those obtained using a linear regression
model developed from the same data. In addition, the residual distributions
reported by the ANN model when using training and testing data sets were
significantly smaller and more symmetric than the corresponding to the
aforementioned regression model.

4. The ANN model developed as part of the study holds promise to be useful in
the prediction of carbon steel corrosion rates under a wide spectrum of
climatological and pollution conditions in Iberoamerica. The effectiveness and
efficiency of the proposed solution methodology should be evaluated in the
modeling of atmospheric corrosion processes associated with other metals in
the MICAT project, and, in general, in the modeling of a wider range of
corrosion processes from experimental data.
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