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Abstract
This paper presents a solution methodology for the problem of
estimating the distributions of permeability and porosity in
heterogeneous and multiphase petroleum reservoirs by
matching the static and dynamic data available.
   The solution methodology includes, the construction of a
“fast surrogate” of an objective function whose evaluation
involves the execution of a time-consuming mathematical
model (i.e. reservoir numerical simulator) based on neural net-
works, DACE modeling, and adaptive sampling. Using
adaptive sampling, promising areas are searched considering
the information provided by the surrogate model and the
expected value of the errors.
   The proposed methodology provides a global optimization
method, hence avoiding the potential problem of convergence
to a local minimum in the objective function exhibited by the
commonly Gauss-Newton methods. Furthermore, it exhibits
an affordable computational cost, is amenable to parallel
processing, and is expected to outperform other general
purpose global optimization methods such as, simulated
annealing, and genetic algorithms.
   The methodology is evaluated using two case studies of
increasing complexity (from 6 to 23 independent parameters).
From the results, it is concluded that the methodology can be
used effectively and efficiently for reservoir characterization
purposes. In addition, the optimization approach holds
promise to be useful in the optimization of objective functions
involving the execution of computationally expensive reser-
voir numerical simulators, such as those found, not only in

reservoir characterization, but also in other areas of petroleum
engineering (e.g. EOR optimization).

Introduction
The identification of the permeability and porosity parameters
that best match the data (static and dynamic) available for a
given reservoir is critical for devising an optimal strategy for
the development of oil and gas fields. The static data makes
reference to those originated from geology, electrical logs,
core analysis, fluid properties, seismic and geostatistics; while
the dynamic data is represented by field measurements such
as, production history, bottom hole pressures from permanent
gauges, water-cut, and gas-oil ratio.
     Estimating permeability and porosity parameters from
available data is difficult because of the following reasons: i)
in general, the number of parameters to be estimated are very
high, since data is scarce, and the reservoirs are heterogeneous
(permeability and porosity have spatial variability), ii) the
available data may have very different scope and nature, and,
iii) the numerical simulation of the reservoir, necessary to
assess how well given permeability and porosity parameters
match the available data are computationally expensive.
     This paper presents a solution methodology, called NEGO
(neural network based efficient global optimization), for the
problem of estimating the distributions of permeability and
porosity in heterogeneous and multiphase petroleum reservoirs
by matching the static and dynamic data available. The
solution methodology includes the construction of a “fast
surrogate” of an objective function whose evaluation involves
the execution of a time-consuming mathematical model (i.e.
reservoir numerical simulator) based on neural networks,
DACE1 modeling, and adaptive sampling. Using adaptive
sampling, promising areas are searched considering the
information provided by the surrogate model and the expected
value of the errors.
    The DACE surrogate model is initially constructed using
sample data generated from the execution of mathematical
models with parameters given by a latin hypercube
experimental design, and a neural network, and provides error
estimates at any point. Additional points are obtained
balancing the exploitation of the information provided by the
surrogate model (where the surface is minimized) with the
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need to improve the surface (where error estimates are high).
The proposed methodology provides a global optimization
method, hence avoiding the potential problem of convergence
to a local minimum in the objective function exhibited by the
commonly used Gauss-Newton methods2,3,, and computational
cost involved in numerically estimating derivatives, and in the
step by step movement along given trajectories. Furthermore,
it exhibits an affordable computational cost, is amenable to
parallel processing, and is expected to outperform other
general purpose global optimization methods such as,
simulated annealing, and genetic algorithms4,5.

Problem definition
The problem under consideration is an optimization problem
(inverse parameter estimation) with typically a high number of
parameters and computationally expensive objective function
evaluations.  Formally, it can be written as:

pRXxfind ⊆∈
such that

f(x) is minimized

where f is an objective function of x, the permeability and
porosity parameter vector, and X is the set constraint.
    The objective function is a measure of the discrepancy
between the data (static and dynamic) available and the
response of the mathematical models using the current set of
parameters. Eq. 1 shows a commonly used form of the objec-
tive function (weighted least square version):

( ) )1(..............................)()( '
calcobscalcobs ddWddxf −−=

where, W is a weighting matrix, dobs makes reference to static
and dynamic data available (normalized), and dcal denotes the
corresponding data obtained using a mathematical model.
     Hence, the problem of interest is one of finding the vector
of parameters x that minimizes the difference between the
available data (dobs), and the values calculated (dcal)
substituting x in the appropriate mathematical model. Note
that a reservoir numerical simulator is necessary for calcu-
lating the response associated with dynamic data (e.g.
production history). As mentioned before, the reservoir
numerical simulator, in general, is computationally expensive
and the number of elements in x is usually high, since the data
is scarce and the reservoirs are heterogeneous. These two
issues place restrictions on the solution approach, given that
the number of objective function evaluations are limited to a
relatively low value considering the time restrictions typically
present in the oil industry.

Solution methodology
The proposed solution approach called NEGO, neural-network
based efficient global optimization, is an improved version of
the EGO algorithm6 for the optimization of computationally
expensive black-box functions.

    The proposed solution methodology involves the following
four steps:

1. Construct a sample of the parameter space using the latin
hypercube method.  The latin hypercube sampling proce-
dure has been shown to be very effective for selecting
input variables for the analysis of the output of a
computer code7.

2. Conduct mathematical simulations using the sample from
the previous step and record the response values
associated with static and dynamic data available, and the
objective function values.

3. Construct a parsimonious neural network using the data
from the previous step. The purpose of this neural
network is to capture the general trends observed in the
data; no rigorous performance criteria is placed on the
neural network. The input variables of the neural network
are the permeability and porosity parameters and the
output variable is the corresponding objective function
value.

4. Construct a DACE model for the residuals, that is, the
difference between the observed objective function
values, and the neural network responses using the
sample data. These models provide not only estimates of
the residuals values but also of the respective errors. The
surrogate model for the evaluation of the objective
function is the sum of the neural network and DACE
models. Details of this step will be given later in this
section.

5. Additional points are obtained balancing the exploitation
of the information provided by the surrogate model
(where the surface is minimized) with the need to
improve the surface (where error estimates are high),
until a stopping criteria has been met.  This balance is
achieved by sampling where a figure of merit is
maximized. Details of the figure of merit will be given
later in this section.

DACE models. These models owe their name, design and
analysis of computer experiments, to the title of an article that
popularized the approach1. These models suggest to estimate
deterministic functions as shown in Eq. 2.

)2....(..................................................).........()( jj xxy ε+µ=

where, y is the function to be modeled, µ is the mean of the
population, and ε is the error with zero expected value, and
with a correlation structure given by Eq. 3.

where, p denotes the number of dimensions in the vector x, σ,
identifies the standard deviation of the population, and,  θh is a
correlation parameter, which is a measure of the degree of
correlation among the data along the h direction.
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    Specifically, given a set of n input/output pairs (x, f), the
parameters, µ, σ, and θ are estimated such that the likelihood
function is maximized1. Having estimated these values, the
function estimate for new points is given by Eq. 4.

where, the line above the letters denote estimates, r’ identifies
the correlation vector between the new point and the points
used to construct the model, R is the correlation matrix among
the n sample points, and 1 denotes an n-vector of ones.
   The mean square error of the estimate is given by  Eq. 5.
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    The model is validated through a cross validation
procedure, that essentially makes sure that the estimates using
all but the point being tested and the actual response values are
within an specified number of standard deviations. The
original EGO algorithm may not cross-validate properly if
there are trends in the data, in contrast to NEGO which is
expected to subtract any significant trends in the data.
    The benefits of modeling deterministic functions using this
probabilistic approach are: i) represents a best linear unbiased
estimator, ii) interpolates the data, and iii) provides error
estimates.

Figure of merit. With reference to Fig 1, there are two zones
where it is desirable to add additional points. The zone (left)
where the objective function is minimized and the zone (right)
where there is a significant error in the prediction. Hence the
figure of merit for adding sample points should be high in
either of these situations. Specifically, the figure of merit6

used in this work, is given by Eq. 6.

where Φ and φ are the cumulative and density normal
distribution functions, respectively; and fmin denotes the
minimum current objective function value. Eq. 6 establishes
the desired balance of sampling where the response surface
(the predictor) is minimized (left term) and in zones where
error estimates are high (right term).  Note that the figure of
merit makes reference to the objective function so it includes
the sum of the output of both the neural network and the
residual models.
    This surface response approach for global optimization is
expected to outperform competing methods, in terms of
necessary computationally expensive objective function
evaluations, to meet an stopping criteria. It can identify
promising areas without the need of moving step by step along

a given trajectory. In addition, by providing estimates of the
errors at unsampled points, it is possible to establish a
reasonable stopping criterion. Furthermore, provides a fast
surrogate model that could be used to visualize the
relationship between the sought parameters and the objective
function values and to identify the relative significance of each
of the parameters.

Implementation. The following case studies were solved
using an implementation of the NEGO algorithm developed
by the authors in Matlab8 Ver. 5.3. The subproblems of
finding near optimal values for maximizing likelihood and the
figure of merit were solved using the DIRECT method9. Note
that the solution of these subproblems do not require
additional computationally expensive objective function
evaluations.   The reservoir numerical simulations were
conducted using a commercial reservoir numerical simulator
(EXODUS Ver. 4.110).

Case studies
The NEGO algorithm was evaluated using two case studies of
increasing complexity (from 6 to 23 independent parameters).
The case studies consider reservoirs similar to those found in
well-known benchmark cases11,12. In both instances, the
dynamic and static data were obtained assuming the
permeability and porosity parameters were known (later called
“correct” values). Then, the problems were posed in inverse
fashion; that is, given dynamic and static data associated with
a reservoir; what are the parameter values that reproduce the
available dynamic and static data?.
    The first case study addresses the integration of dynamic
data (cumulative oil production and gas-oil ratio), while the
second case considers the integration of both dynamic
(cumulative oil production and gas-oil ratio) and static data (a
variogram model). In both cases, the production data is
available yearly, for a period of ten (10) years, and in the
second case study the covariance is calculated using ten (10)
intervals.

    Case study No. 1. The reservoir under consideration and
the coordinate system used, are illustrated in Fig. 2. It is
assumed that production data  (i.e. COP and GOR) are availa-
ble and that certain permeability and porosity parameters are
unknown.
    With reference to Fig. 3, the reservoir is at a depth of 8325
ft., has an initial pressure of 4800 psi., and initial oil and water
saturations of 0.8, and 0.2, respectively. The numerical grid is
composed of 10x10x3 blocks in the x, y and z directions. The
injector and producer wells are placed in the blocks denoted as
(10,10,3) and (1,1,1), respectively. The porosity is assumed to
be constant throughout the reservoir, the horizontal
permeability is isotropic, but, as the vertical permeability, is
different for each of the layers.
    In this case, the unknown parameters and the restrictions on
their possible values are presented in Table 1, and the
objective function is given by Eq. 7.
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The neural network and DACE models were constructed using
a sample of sixty (60) points selected using a latin hypercube
sampling procedure. Twenty (20) additional points were added
in the search of the “correct” permeability and porosity
parameters.

Case study No. 2. The reservoir under consideration and the
coordinate system used, are illustrated in Fig. 4. It is assumed
that dynamic data (i.e. COP and CGOR) and static data (vario-
gram model) are available and that certain permeability and
porosity parameters are unknown.
    With reference to Fig. 5, the reservoir is at a depth of 8375
ft., has an initial pressure of 4800 psi., and initial oil and gas
saturations of 1.0, and 0.0, respectively. The numerical grid is
composed of 10x10x4 blocks in the x, y and z directions. The
producer wells 1 and 2, are placed in the blocks denoted by
(10,1,1), and (1,10,1) respectively. The injector well is placed
in the block (1,1,1). The porosity varies among layers with
0.30 for layer 1, 0.20 for layer 2, and 3, and 0.10 for layer 4.
The numerical grid was grouped into twenty (20) zones,
distributed among the different layers as depicted in Figs. 6-9.
The permeability is considered to be the same within a given
zone and does not change with coordinate direction
(isotropic).
    In this case, the unknown parameters and the restrictions on
their possible values are presented in Table 2, and the
objective function is given by Eq. 8.
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    The neural network and DACE models were constructed
using a sample of one hundred and eighty six (187) points
selected using a latin hypercube sampling procedure. Eighty
(80) additional points were added in the search of the
“correct” permeability and porosity parameters.

Results and discussion
With reference to Case study No. 1, the neural network was
constructed with an 6x2x1 architecture with a sum of square
errors of 5.82e-002, and 9.68e-002, respectively. Additionally,
all the points in the DACE model cross-validated within three
times of the standard deviation. The minimum objective
function value found within the initial sample (60 points) was

2.17e-03. Additional points (20) were added so that the figure
of merit was maximized; from those points the best solution
found (8th additional sampled point) observed an objective
function value of 3.46e-04, that is an order of magnitude lower
than the best found in the initial sample. The parameter values
and the objective function value for the additional points are
shown in Table 3. The maximum percentage error in the
parameters estimation (K1, K2, K3, K4, K5, P) is 10%, as
illustrated in Fig. 10.  The maximum percentage errors in the
estimation of COP and GOR, were 0.18%, and 0.45%, respec-
tively. Figs. 11 and 12 shows the excellent agreement
between the values of COP and GOR obtained using the
“correct” parameters and those found by the NEGO algorithm.
Note that the results were obtained using only 80
computationally expensive objective function evaluations.
    With reference to Case study No. 2, the neural network was
constructed with a 23x3x1 architecture with a sum of square
errors of 4.97e-002 and 9.05e-002, respectively.  A 98% of the
points in the DACE model cross-validated within three times
of the standard deviation. The minimum objective function
value found within the initial sample (187 points) was 2.16e-
02. Additional points (80) were added so that the figure of
merit was maximized; from those points the best solution
found (56th additional sampled point) observed an objective
function value of 1.37e-02, that is approximately 50% lower
than the best found in the initial sample. The parameter values
and the objective function value for the additional points are
shown in Table 4. The maximum percentage error in the
parameters estimation is approximately 20%, as illustrated in
Fig. 13.  The maximum percentage errors in the estimation of
COP and CGOR, and COV were 0.79%, 6.81%, and 8.09%,
respectively. Figs. 14 and 15 shows the excellent agreement
between the values of COP and CGOR obtained using the
correct parameters and those found by the proposed solution
methodology. Fig. 16 depicts the agreement between the
desired variogram and that obtained using the NEGO
algorithm.  Note that the results were obtained using only 267
computationally expensive objective function evaluations.
    From the results it is concluded that the methodology can be
used effectively and efficiently for reservoir characterization
purposes. In addition, the optimization approach holds
promise to be useful in the optimization of objective functions
involving the execution of computationally expensive
mathematical models (e.g. reservoir numerical simulators),
such as those found, not only in reservoir characterization, but
also in other areas of petroleum engineering (e.g. EOR
optimization).   

Conclusions
♦ A global optimization method for integrating static and

dynamic data into a reservoir description, called NEGO
has been proposed. The method includes the construction
of a “fast surrogate” of an objective function whose
evaluation involves the execution of a time-consuming
mathematical model (i.e. reservoir numerical simulator)
based on  neural networks, DACE modeling, and adaptive
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sampling. Using adaptive sampling, promising areas are
searched considering the information provided by the
surrogate model and the expected value of the errors.

♦ The results suggest that the NEGO algorithm can be used
effectively and efficiently for reservoir characterization
purposes. In addition, the optimization approach holds
promise to be useful in the optimization of objective
functions involving the execution of computationally
expensive mathematical models (e.g. reservoir numerical
simulators), such as those found, not only in reservoir
characterization, but also in other areas of petroleum
engineering (e.g. EOR optimization).

♦ The NEGO algorithm is expected to outperform compe-
ting methods, in terms of  computationally expensive
objective function evaluations, necessary to meet an
stopping criteria. This is because it can identify promising
areas without the need of moving step by step along a
given trajectory. In addition, by providing estimates of the
errors at unsampled points, it is possible to establish a
reasonable stopping criteria. Furthermore, provides a fast
surrogate model that could be used to visualize the
relationship between the sought parameters and the
objective function values and to identify the relative
significance of each of the parameters.

Nomenclature
 DACE = Design and analysis of computer experiment

                x = Parameters vector
 X = Set constraint
f = Objective function

W  = Weighting matrix
dobs  = Reference to static and dynamic data available

(normalized)
dcal   = Denotes the data obtained using a mathematical

model
    y = DACE response value
    µ = Mean of the population
    ε = Error in the DACE model
    p = Number of dimensions in the vector x
    σ = Standard deviation of the population
   θh = Correlation parameter
    r’= Correlation vector between the new point and

the points used to construct the model
   R = Correlation matrix between the n sample points

 1 = n-vector of ones
          fom = Figure of merit

Φ = Cumulative normal distribution function
 φ = Density normal distribution function
y =  DACE predictor

        fmin =  Current best function value

         s2(x) = Mean square error of the predictor
         COP = Cumulative oil production
     CGOR = Cumulative gas oil ratio
        GOR = Gas oil ratio

        COV = Covariance
.        BIS  = Best initial solution

Subscripts
        h = Coordinate directions
    obv = Observed
     cal = Calculated

Superscript
* = New point

   ' = Transpose
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TABLE 1 - PERMEABILITY AND POROSITY PARAMETERS (CASE STUDY No. 1)
Variable Description Range Units

K1 Permeability in the x and y directions. Layer 1 450 650 md
K2 Permeability in the x and y directions. Layer 2 35 55 md
K3 Permeability in the x and y directions. Layer 3 160 240 md
K4 Permeability in the z direction. Layer 1 52 82 md
K5 Permeability in the z direction. Layers 2 and 3 22 32 md
P Porosity. Layers 1, 2 and 3 0.25 0.37 -

TABLE 2- PERMEABILITY AND POROSITY PARAMETERS (CASE STUDY No. 2)
Variable Description Range Units

K11 Permeability zone 1, Layer 1 432 624 md
K12 Permeability zone 2, Layer 1 345 525 md
K13 Permeability zone 3, Layer 1 400 600 md
K14 Permeability zone 4, Layer 1 340 480 md
K15 Permeability zone 5, Layer 1 376 540.5 md
K21 Permeability zone 1, Layer 2 43.2 62.4 md
K22 Permeability zone 2, Layer 2 31.5 49.5 md
K23 Permeability zone 3, Layer 2 40 60 md
K24 Permeability zone 4, Layer 2 34 48 md
K25 Permeability zone 5, Layer 2 37.6 54.05 md
K31 Permeability zone 1, Layer 3 16.2 23.4 md
K32 Permeability zone 2, Layer 3 11.2 17.6 md
K33 Permeability zone 3, Layer 3 16 24 md
K34 Permeability zone 4, Layer 3 12.75 18 md
K35 Permeability zone 5, Layer 3 13.6 19.55 md
K41 Permeability zone 1, Layer 4 8.1 11.7 md
K42 Permeability zone 2, Layer 4 4.9 7.7 md
K43 Permeability zone 3, Layer 4 8 12 md
K44 Permeability zone 4, Layer 4 4.25 6 md
K45 Permeability zone 5, Layer 4 6.4 9.2 md
P1 Porosity. Layer 1 0.27 0.39 -

P2,3 Porosity. Layers 2 and 3 0.14 0.22 -
P4 Porosity. Layer 4 0.08 0.12 -
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TABLE 3 – ADDITIONAL SAMPLED POINTS (CASE STUDY NO. 1)
Obs. K1 K2 K3 K4 K5 P f.

1 483.33 51.67 200 67 30.33 0.31 0.00037604
2 550 38.33 226.67 57 23.67 0.31 0.00373747
3 616.67 45 173.33 67 27 0.31 0.0420268
4 483.33 38.33 226.67 67 27 0.35 0.08506395
5 616.67 51.67 200 57 27 0.35 0.02255316
6 483.33 38.33 226.67 67 27 0.31 0.02850679
7 550 51.67 200 57 23.67 0.31 0.04083019
8 483.33 45 200 77 23.67 0.31 0.00034579
9 550 38.33 173.33 57 27 0.35 0.00852373
10 550 38.33 226.67 77 30.33 0.31 0.01906443
11 616.67 38.33 200 67 27 0.35 0.01527427
12 483.33 51.67 226.67 67 27 0.31 0.06371478
13 483.33 38.33 200 57 30.33 0.31 0.00348125
14 550 38.33 200 57 30.33 0.35 0.05410506
15 550 38.33 173.33 67 23.67 0.35 0.00800637
16 483.33 45 226.67 57 30.33 0.31 0.03427427
17 483.33 45 173.33 67 30.33 0.31 0.07724744
18 550 51.67 226.67 67 30.33 0.31 0.00908735
19 616.67 45 200 57 23.67 0.35 0.01946102
20 550 45 200 57 23.67 0.35 0.06582813

TABLE 4 - NEGO ESTIMATES FOR THE PERMEABILITY AND ´POROSITY
PARAMETERS (CASE STUDY No. 2)

Variable “Correct”
Value

BIS Error (%) Best
 Solution

Error (%)

K11 480 474.47 1.152 592 23.333
K12 450 402.384 10.581 435 3.3333
K13 500 472 5.6 500 0
K14 400 361.882 9.529 363.333 9.166
K15 470 495.345 5.392 403.417 14.1667
K21 48 46.577 2.964 46.4 3.3333
K22 45 42.730 5.044 40.5 10
K23 50 45.972 8.056 50 0
K24 40 46.412 16.031 41 2.5
K25 47 49.709 5.764 45.825 2.5
K31 18 20.038 11.32 19.8 10
K32 16 12.418 22.384 14.4 10
K33 20 23.607 18.036 20 0
K34 15 17.219 14.799 15.375 2.5
K35 17 15.959 6.122 16.575 2.5
K41 9 8.455 6.06 9.9 10
K42 7 6.905 1.348 6.3 10
K43 10 10.416 4.168 10 0
K44 5 5.831 16.619 5.125 2.5
K45 8 6.935 13.311 7.8 2.5
P1 0.3 0.304 1.472 0.33 10

P2,3 0.2 0.1904 4.78 0.18 10
P4 0.1 0.0815 18.408 0.1 0

f 0.0216 - 0.0137 -
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Fig. 1.- Illustration of the purpose of the figure of merit
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Fig. 3.-Schematic representation of the reservoir considered in
(Case Study No. 1)
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)Fig. 6.- Zones 1 – 5 in layer1.( Case study No. 2)

Fig. 10.- Distribution of the error in parameter estimations. (Case
Study No. 1)
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Fig. 7.- Zones 6 – 10 in layer 2.( Case study No. 2
Fig. 9.-.  Zones 16 – 20 in layer 4. (Case study No. 2)
Fig. 8.- Zones 11 – 15 in layer 3. (Case study No. 2)
11.-Cumulative oil production obtained using the best solution
he “correct” solution (Case Study No. 1)
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|

Fig. 13.-Distribution of the error in parameter estimations. (Case
Study No. 2)

Fig. 12.-Gas oil ratio obtained using the best solution and the
“correct” solution (Case Study No. 1)

Fig. 15.-Cumulative gas oil ratio obtained using the best solution and
the “correct” solution (Case Study No. 2)

Fig. 14.-Cumulative oil production obtained using the best solution and
the “correct” solution (Case Study No. 2)
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Fig. 16.-Covariance values obtained using the best solution and “correct”  value of horizontal
permeability parameter


	The neural network and DACE models were constructed using a sample of si\
xty (60) points selected using a latin hypercube sampling procedure. T\
wenty (20) additional points were added in the search of the “correct”\
 permeability and porosity parameters.

