SPE 69704

)

Society of Petroleum Engineers

Surrogate Modeling-Based Optimization of SAGD Processes
Nestor V. Queipo, SPE, Javier V. Goicochea P., SPE, and Salvador Pintos, Applied Computing Institute, Faculty of

Engineering, University of Zulia, Venezuela.

Copyright 2001, Society of Petroleum Engineers Inc.

This paper was prepared for presentation at the 2001 SPE International Thermal Operations
and Heavy Oil Symposium held in Porlamar, Margarita Island, Venezuela, 12-14 March 2001.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300
words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract

This paper presents a solution methodology for the
optimization of geometrical and operational parameters of
SAGD processes in a heterogeneous and multiphase petroleum
reservoir. The optimization refers to the maximization or
minimization of performance measures such as net present
value, cumulative oil production or cumulative steam injected.

The solution methodology includes the construction of a
“fast surrogate” of an objective function whose evaluation
involves the execution of a time-consuming mathematical
model (i.e. reservoir numerical simulator) based on neural
networks, DACE modeling, and adaptive sampling. Using
adaptive sampling, promising areas are searched considering
the information provided by the surrogate model and the
expected value of the errors.

The proposed methodology provides a global optimization
method, hence avoiding the potential problem of convergence
to a local minimum in the objective function exhibited by the
commonly Gauss-Newton methods. Furthermore, it exhibits
an affordable computational cost, is amenable to parallel
processing, and is expected to outperform other general-
purpose global optimization methods such as, simulated
annealing, genetic algorithms, and pattern search methods.

The methodology is evaluated using a case study with
vertical spacing, steam injected enthalpy, injection pressure
and subcooling as the sought parameter values in a SAGD
process that optimize a weighted sum of cumulative oil
production and cumulative steam injected for a selected
reservoir. From the results, it is concluded that the
methodology can be used effectively and efficiently for the
optimization of SAGD processes. In addition, the optimization
approach holds promise to be useful in the optimization of

objective functions involving the execution of computationally
expensive reservoir numerical simulators, such as those found,
not only in oil recovery processes, but also in other areas of
petroleum engineering (e.g. hydraulic fracturing).

Introduction

There is considerable interest in effective oil recovery
mechanisms for heavy oil and bitumen due to the decline of
conventional oil reserves, and the estimated magnitude of
these resources worldwide (approximately 6 trillion bbl). A
major part of these resources are located in Venezuela, Canada
and the United States.'

While the use of horizontal wells has improved the
recovery of heavy oil, the ultimate oil recovery remains
unsatisfactory due to the low mobility of the crude at reservoir
conditions. Different alternatives have been proposed in the
last three decades for improving the flowing capacity of heavy
oil and improve oil recovery. Examples of these alternatives
are, cyclic steam stimulation (CSS), steam drive, in situ
combustion, and SAGD. The latter could be effective even in
reservoirs containing highly viscous oil or bitumen” and have
proven to be economically viable at a variety of pilot™* and
commercial recovery projects,’ typically achieving oil
recoveries of over 50% from the well pattern with a steam/oil
ratio of 2.5 to 4. See the work by Butler’ and the references
contained in it for details of the SAGD concept and
mechanisms.

The performance of the SAGD process can be significantly
affected by the selection of the geometrical and operational
parameters. Examples of the former are the vertical spacing,
lengths of the producer and injector wells, and the horizontal
separation between well pairs; the latter include parameters
such as steam injected enthalpy, injection pressure and
subcooling. Even though there have been significant
contributions regarding screening of reservoir candidates,"”
theoretical aspects,”® analytical and numerical modeling,”’
laboratory experiments,'™'" the optimal or near optimal
selection of the aforementioned parameters have been
addressed only by a few sensitivity studies.'*"

Kamath et al.'? using a numerical two-dimensional model
that accounts for reservoir heterogeneities conducted a
sensitivity study of a SAGD process which considers the
relative influence with respect to a base case of different
parameters such as porosity, absolute permeability, steam
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temperature, steam quality, horizontal well length,
injector/producer spacing, shale barriers, and lateral well
spacing, among others. The study establishes percent
recovery, and oil/steam ratio, as performance measures.
Kisman and Yeung" performed a similar study using a two
dimensional base case numerical model that quantifies the
relative influence of factors such as thermal conductivity, flow
barriers, oil viscosity, relative permeability, solution gas, well
placement, among others. Note that these are both sensitivity
studies that do not address the formal optimal setting of
geometrical and operational parameters.

This paper presents a solution methodology called NEGO
(neural network based efficient global optimization) for the
optimization of the geometrical and operational parameters in
a SAGD process, such that a given performance measure is
minimized. The solution methodology includes the construc-
tion of a “fast surrogate” of an objective function whose
evaluation involves the execution of a time-consuming
mathematical model (i.e. reservoir numerical simulator) based
on neural networks, DACE" modeling, and adaptive
sampling. Using adaptive sampling, promising areas are
searched considering the information provided by the
surrogate model and the expected value of the errors.

The DACE surrogate model is initially constructed using
sample data generated from the execution of mathematical
models with parameters given by a latin hypercube
experimental (LHC) design, and a neural network, and
provides error estimates at any point. Additional points are
obtained balancing the exploitation of the information
provided by the surrogate model (where the surface is
minimized) with the need to improve the surface (where error
estimates are high). The proposed methodology provides a
global optimization method, hence avoiding the potential
problem of convergence to a local minimum in the objective
function exhibited by the commonly used Gauss-Newton
methods,'™'® and computational cost involved in numerically
estimating derivatives, and in the step by step movement along
given trajectories. Furthermore, it exhibits an affordable
computational cost, is amenable to parallel processing, and is
expected to outperform other general purpose global
optimization methods such as, simulated annealing, genetic
algorithms'”'® and pattern search methods."

Problem Definition

The optimization of SAGD processes is a complex task. The
complexity is associated with a time consuming and limited
number of objective function (performance measure) evalua-
tions, a potentially high number of parameters, and a non-
linear solution space. Performance measures such as net
present value, cumulative oil production, and cumulative
steam injection, require computationally expensive reservoir
numerical simulations restricted in number given the time
constraints typically present in the oil industry. The number of
geometrical (e.g. vertical and horizontal spacing, and wells
length) and operational parameters (e.g. subcooling, steam
injected enthalpy, injection temperature, etc.) to be considered
may be significant, and solutions may be needed under

different economic and reservoir/oil property scenarios. In
addition, the non-linear nature of the process makes not
possible the identification of optimal settings through sensiti-
vity studies (as it is usually performed). Formally, it can be
written as:

find xe X C R?
such that
f( x ) is minimized

where f is a mathematical function (objective function) of x,
the geometrical and operational parameter vector, and X is the
set constraint. Hence, the problem of interest is one of finding
the vector of parameters that minimized a given performance
measure of a SAGD process subject to a set constraint.

Solution Methodology

The proposed solution approach called NEGO,” neural-

network based efficient global optimization, is an improved

version of the EGO algorithm®' for the optimization of
computationally expensive black-box functions.

The proposed solution methodology involves the following
four steps:

1. Construct a sample of the parameter space using the latin
hypercube method. The latin hypercube sampling
procedure has been shown to be very effective for
selecting input variables for the analysis of the output of a
computer code.”

2. Conduct mathematical simulations using the sample from
the previous step and obtain the objective function values.

3. Construct a parsimonious neural network (multilayer
perceptron) using the data from the previous step. The
purpose of this neural network is to capture the general
trends observed in the data; no rigorous performance
criterion is placed on the neural network.

4. Construct a DACE model for the residuals, that is, the
difference between the observed objective function
values, and the neural network responses using the sample
data. These models provide not only estimates of the
residuals value but also of the respective errors. The
surrogate model for the evaluation of the objective
function is the sum of the neural network and DACE
models. Details of this step will be given later in this
section.

5. Additional points are obtained balancing the exploitation
of the information provided by the surrogate model
(where the surface is minimized) with the need to
improve the surface (where error estimates are high), until
a stopping criterion has been met. This balance is
achieved by sampling where a figure of merit is
maximized. Details of the figure of merit will be given
later in this section.

DACE models. These models owe their name, design and
analysis of computer experiments, to the title of an article that
popularized the approach.'* These models suggest to estimate
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deterministic functions as shown in Eq. 2.
P(X ) ZUAE(X ) o, 2)

where, f is the function to be modeled, W is the mean of the
population, and € is the error with zero expected value, and
with a correlation structure given by Eq. 3.

p
cov(e(x,),(x;) =07 exp| — Y 6, (x/‘ - xjh)z ............ 3)
h=1

where, p denotes the number of dimensions in the vector x, G,
identifies the standard deviation of the population, and, 6 is a
correlation parameter, which is a measure of the degree of
correlation among the data along the h direction.

Specifically, given a set of n input/output pairs (x, y), the
parameters, |, ¢, and 0 are estimated such that the likelihood
function is maximized." Having estimated these values, the
function estimate for new points is given by Eq. 4.

YOO =LA R =1 oo 4)

where, the line above the letters denote estimates, r’ identifies
the correlation vector between the new point and the points
used to construct the model, R is the correlation matrix among
the n sample points, and L denotes an n-vector of ones.

The mean square error of the estimate is given by Eq. 5.

sz(x* )z *|1-rR'r+ 7(1 ;[;ITZV)

The model is validated through a cross validation
procedure, that essentially makes sure that the estimates using
all but the point being tested and the actual response values are
within an specified number of standard deviations. The
original EGO algorithm may not cross-validate properly if
there are trends in the data, in contrast to NEGO, which is
expected to subtract any significant trends in the data.

The benefits of modeling deterministic functions using this
probabilistic approach are: i) represents a best linear unbiased
estimator, ii) interpolates the data, and iii) provides error
estimates.

Figure of merit. With reference to Fig 1, there are two zones
where it is desirable to add additional points. The zone (left)
where the objective function is minimized and the zone (right)
where there is a significant error in the prediction. Hence the
figure of merit for adding sample points should be high in
either of these situations. Specifically, the figure of merit”’
used in this work, is given by Eq. 6.

where, @ and ¢ are the cumulative and density normal
distribution functions, respectively; and f, denotes the
minimum current objective function value. Eq. 6 establishes
the desired balance of sampling where the response surface
(the predictor) is minimized (left term) and in zones where
error estimates are high (right term). Note that the figure of
merit makes reference to the objective function so it includes

the sum of the output of both the neural network and the
residual models.

This surface response approach for global optimization is
expected to outperform competing methods, in terms of
necessary computationally expensive objective function
evaluations, to meet a stopping criterion. It can identify
promising areas without the need of moving step by step along
a given trajectory. In addition, by providing estimates of the
errors at unsampled points, it is possible to establish a
reasonable stopping criterion. Furthermore, provides a fast
surrogate model that could be wused to visualize the
relationship between the sought parameters and the objective
function values and to identify the relative significance of each
of the parameters.

Implementation. The following case study was solved using
an implementation of the NEGO algorithm developed by the
authors®™ in Matlab.** The subproblems of finding near
optimal values for maximizing likelihood and the figure of
merit were solved using the DIRECT method>. Note that the
solution of these subproblems do not require additional
computationally expensive objective function evaluations.
The reservoir numerical simulations were conducted using a
commercial reservoir numerical simulator (EXOTHERM).25

Case Study

The NEGO algorithm was evaluated using a synthetic problem
having geometrical and operational parameters: vertical
spacing, injection pressure, steam-injected enthalpy and
subcooling, with ranges as specified in Table 1. The objective
function (given by Eq. 7) to be minimized is a weighted sum
of normalized values of cumulative oil production (COP) and
cumulative steam injected (CSI).

f(x) =—%COP+%CSI ................................................. )

The weights (-0.75 for COP and +0.25 for CSI) reflect a
preference structure and the intend to maximize COP and
minimize CSI. The values of COP and CSI are calculated after
a five (5) year production period.

An illustration of the 2D reservoir simulation grid under
consideration and the coordinate system is depicted in Fig. 2.
The grid is composed of 40x1x54 blocks in the x, y and z
directions, respectively, with symmetry with respect to the z
axis. The producer well is placed in the block denoted as
(1,1,49), while the injector well is placed in a block within the
blocks (1,1,35) to (1,1,47); both wells are of 1500 m length.
The reservoir is at a depth of 500 m, has an initial pressure of
500 kPa, and initial oil and water saturation of 0.85 and 0.15,
respectively. Furthermore, the porosity is assumed to be
constant throughout the reservoir and equal to 0.2, the
horizontal permeability is isotropic and equal to 1500 md and
vertical permeability is equal to 450 md. The initial
temperature of the reservoir is 15 °C. Further details of the
reservoir and fluid data are presented in Tables 2 to 5 and
Fig. 3.
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The neural network and DACE models were constructed
using a sample of forty (40) points selected using a latin
hypercube sampling procedure. Fifteen (15) additional points
were added in the search of the optimum parameters.

Results and discussion

With reference to the case study, the parsimonious neural
network has a 4xIxl architecture with a mean square
normalized error of 3.657E-02; all the points in the DACE
model cross-validated within three times of the standard
deviation.

The initial sample also shows (Table 6) the sensitivity of
the objective function to the parameter selection with COP and
CSI in the intervals [2.2E3 m’, 154.8E3 m’], and [5.0E3 m’,
710.6E3 m’], respectively. The minimum objective function
value found within the initial sample (40 points) was —0.5418
which corresponds to a COP of 154.8E3 m® and a CSI of
592.5E3 m3; the associated parameters values for vertical
spacing, injection pressure, steam-injected enthalpy and
subcooling are 11 m, 3756.6 kPa, 2578.4 kJ/kg and 29.7 °C
respectively.

Additional points (15) maximizing the figure of merit were
added (see Table 7). From those points the best solution found
(2™ additional sampled point) observed an objective function
value of -0.5537, that is slightly better than the corresponding
to the initial sample (2.19% lower) with a COP of 156.9E3 m’
and a CSI 589.0 E3 m’ with similar parameter values.
Changing parameter values with respect to the overall best
solution found or extending the optimization process of the
figure of merit did not improve the objective function value;
all of which suggest the cited solution is in fact near optimal.

The parameters associated with the optimal or near optimal
solution found could not have been anticipated because of the
complex non—linear interaction among the selected parameters
and the objective function. Selecting maximum parameter
values results in 70% lower COP and 72% lower CSI;
maximum parameter values for injection pressure, steam-
injected enthalpy and subcooling, and minimum vertical
spacing translates in 52% lower COP and 36% lower CSI;
maximum parameter values for injection pressure, steam-
injected enthalpy and subcooling, and the frequently used
vertical spacing of 5 m resulted in 22% lower COP and 16%
lower CSI; finally, mean parameter values provided 30%
lower COP and 20% lower CSI. All of these alternatives
provide higher objective function values.

Conclusions

e A global optimization method for the evaluation of the
operational parameters of SAGD process called NEGO
has been proposed. The method includes the construction
of a “fast surrogate” of an objective function whose
evaluation involves the execution of a time-consuming
mathematical model (i.e. reservoir numerical simulator)
based on neural networks, DACE modeling, and adaptive
sampling. Using adaptive sampling, promising areas are
searched considering the information provided by the
surrogate model and the expected value of the errors.

e The results suggest that the NEGO algorithm can be used

effectively and efficiently for improved oil recovery
purposes. In addition, the optimization approach holds
promise to be useful in the optimization of objective
functions involving the execution of computationally
expensive mathematical models (e.g. reservoir numerical
simulators), such as those found, not only in oil recovery
processes, but also in other areas of petroleum
engineering (e.g. hydraulic fracturing).

e The NEGO algorithm is expected to outperform compe-

ting methods, in terms of computationally expensive
objective function evaluations necessary to meet a
stopping criterion. This is because it can identify
promising areas without the need of moving step by step
along a given trajectory. Furthermore, provides a fast
surrogate model that could be used to visualize the
relationship between the sought parameters and the
objective function values and to identify the relative
significance of each of the parameters.

Nomenclature
DACE

Design and analysis of computer
experiment

Parameters vector

Set constraint

Objective function

NEGO objective function predictor

X
X
f

7

w; Weighting coefficients
u = Mean of the population
¢ = Error in the DACE model

p = Number of dimensions in the vector x
o = Standard deviation of the population
0, = Correlation parameter
r = Correlation vector between the new point
and the points used to construct the model
R = Correlation matrix between the n sample
points
L = n-vector of ones
fom = Figure of merit
® = Cumulative normal distribution function
¢ = Density normal distribution function
y = Residual function
y = DACE residual predictor
fmin = Current best function value
s’(x') = Mean square error of the predictor
COP = Cumulative oil production (m®)
CSI = Cumulative steam injected (m®)
COV = Covariance
BIS = Bestinitial solution
LHC = Latin hypercube
Subscript
h = Coordinate directions
Superscript
* = New point
' = Transpose
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TABLE 1 - PARAMETER RESTRICTIONS (CASE STUDY)
Parameter Description Range Units
Min Max
X4 Vertical spacing of wells 3 15 m
Xz Injection pressure 1000 4000 kPa
X3 Steam - injected enthalpy 1980 2580 kJ/kg
Xy Subcooling 5 30 °C

TABLE 2 - RESERVOIR DATA AND PETROPHYSICAL PROPERTIES
(CASE STUDY)
X Y z Units
Gridblocks 40 1 54
Gridblock size 1.5 1500 1 m
Reservoir size 60 1500 54 m
Rock compressibility 1.00E-07 kPa™
Rock heat capacity 2390.00 kJ/m3/K
Rock thermal conductivity 147 kJ/D-m-K
Gas - Oil contact depth 160 m
Reservoir initial temperature 15 °C
Reservoir initial pressure 500 kPa
Qil:
Thermal Capacity 1.88 kd/kg/K
Thermal Expansion 7.0E-4 °eC’
Density 1029 Kg/m?®
Compresibility 7.2E-7 kPa™
TABLE 3 - GEOLOGICAL MODEL (CASE STUDY)
Horizontal Vertical Thickness
Layer Permeability Permeability Porosity (m) Initial Sw Initial So
1 1500 450 0.2 54 0.15 0.85

TABLE 4 - OVERBURDEN AND UNDERBURDEN
CHARACTERISTICS (CASE STUDY)

Thermal
Temperature Heat Capacity Conductivity
Thickness (m) (°C) (kJ/m%/K) (kJ/D-m-K)
Overburden 60 15 2390 146.88

Underburden 60 15 2390 233.28
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TABLE 5 - RELATIVE PERMEABILITY DATA (CASE STUDY)

Water — Oil Liquid - Gas
SW KRW KFKOW SL KRG KROG
0.15 0.000 1.000 0.15 0.850 0.000
0.20 0.000 0.882 0.20 0.750 0.000
0.25 0.002 0.800 0.25 0.680 0.003
0.30 0.006 0.720 0.30 0.612 0.008
0.35 0.013 0.600 0.35 0.510 0.020
0.40 0.025 0.470 0.40 0.400 0.038
0.45 0.044 0.350 0.45 0.298 0.056
0.50 0.070 0.240 0.50 0.204 0.056
0.55 0.104 0.165 0.55 0.140 0.069
0.60 0.148 0.093 0.60 0.119 0.075
0.65 0.204 0.000 0.65 0.096 0.090
0.70 0.271 0.000 0.70 0.057 0.137
0.75 0.352 0.000 0.75 0.052 0.199
0.80 0.447 0.000 0.80 0.038 0.257
0.85 0.559 0.000 0.85 0.019 0.311
0.90 0.687 0.000 0.90 0.010 0.454
0.95 0.834 0.000 0.95 0.005 0.628
1.00 1.000 0.000 1.00 0.000 1.000
TABLE 6 - CHARACTERIZATION OF OBJECTIVE FUNCTION
VALUES WITHIN THE INITIAL SAMPLE (CASE STUDY)
MIN MAX Mean Standard Deviation
(1.0E3m°% | (1.0E3m° (1.0E3 m°) (1.0E3 m°)
COP 2.23 154.80 89.30 42.07
csl 4.99 710.55 392.62 200.83
f 0 -0.5418 -0.2907 0.1427
TABLE 7 — ADDITIONAL SAMPLED POINTS (CASE STUDY)
RUN Vertical Pressure Enthalpy Subcooling CcoP s CSl . f
spacing (m) (kPa) (kJ/Kg) (°C) (1.0E3 m”)| (1.0E3 m*)
NEGO1 10 3759.2593 2480.0000 28.0967 154.1330 | 641.9000 -0.5211
NEGO2 11 3759.2593 2577.9424 28.1310 156.9660 | 589.0300 -0.56537
NEGO3 11 3746.9136 2578.7654 25.3189 155.5530 | 603.1300 -0.5418
NEGO4 11 3759.2593 2576.2963 27.6852 141.6320 | 460.3600 -0.5239
NEGO5 15 3730.4527 2561.2071 28.9769 117.3830 | 436.5300 -0.4132
NEGO6 7 2425.9259 2265.1852 16.6770 110.6570 | 434.1600 -0.3809
NEGO7 12 3722.2222 2487.4074 24.9074 153.4730 | 620.4700 -0.5254
NEGO8 7 3166.6667 2450.0960 13.3276 129.8720 | 494.7100 -0.4539
NEGO9 10 3168.8005 2450.6752 5.0019 143.5830 | 615.9600 -0.4784
NEGO10 4 3167.5812 2450.1875 5.0019 95.0670 | 451.9400 -0.2980
NEGO11 15 3165.2949 2462.3503 5.0019 89.8760 | 347.1900 -0.3096
NEGO12 10 3165.2949 2451.6507 5.0019 146.5280 | 611.9200 -0.4943
NEGO13 10 3166.6667 2450.4618 5.0019 121.3610 | 442.6300 -0.4306
NEGO14 12 3167.7336 2455.7252 7.7776 123.1230 | 419.4200 -0.4475
NEGO15 14 3161.1797 2456.5280 5.0006 112.1580 | 452.0100 -0.3820
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Fig. 1 - lllustration of the purpose of the figure of merit.
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Fig. 2 - lllustration of the grid used in the numerical simulations (Case study).
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Fig. 3 — Oil viscosity vs. Temperature.



