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Abstract

This paper presents a methodology for the optimal hydraulic fracture treatment design. The methodology includes the
construction of a “fast surrogate™ of an objective function whose evaluation involves the execution of a time-consuming
computational model, based on neural networks, DACE modeling, and adaptive sampling. Using adaptive sampling, promising
areas are searched considering the information provided by the surrogate model and the expected value of the errors. The
proposed methodology provides a global optimization method, hence avoiding the potential problem of convergence to a local
minimum in the objective function exhibited by the commonly Gauss—Newton methods. Furthermore, it exhibits an affordable
computational cost, is amenable to parallel processing, and is expected to outperform other general purpose global optimization
methods such as simulated annealing and genetic algorithms. The methodology is evaluated using two case studies
corresponding to formations differing in rock and fluid properties, and geometry parameters. From the results, it 1s concluded
that the methodology can be used effectively and efficiently for the optimal design of hydraulic fracture treatments. © 2002

Elsevier Science B.V. All rights reserved.

Keywords: Bayesian global optimization; Hydraulic fracture design; Surrogate modeling-based optimization

1. Introduction

Hydraulic fracturing is one of the most common
stimulation strategies used to enhance the production
from oil and gas wells. During a hydraulic fracturing
treatment, fluids are injected to the formation at a
pressure high enough to cause tensile failure of the
rock and propagate the fracture. As a result of a
successful treatment, a path with much higher perme-
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ability than the surrounding formation is created from
the well. Each of the fluids injected during the treat-
ment execution performs a significant and specific
task. The initial fluid, known as pad, initiates and
propagates the fracture. The following stages of the
treatment involve the injection of a fracturing fluid
with varying concentrations of proppant. The fluid is
intended to continue the fracture propagation and the
proppant will keep the fracture open, even though the
formation stresses will try to close the fracture after
the fluid injection ceases.

For a given formation, the design of a hydraulic
fracture treatment involves the selection of appropri-
ate fracturing fluids and proppants, the number of
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treatment stages, the concentrations and the rates and
pressures of injection of each stage. Each design will
result in a specific fracture geometry and conductivity,
which is related to the production increase obtained
from the fractured well. This means that, due to the
several possible combinations of the parameters
involved and their nonlinear interactions, there are a
significant number of possible fracture geometries,
each of which will result in a different posi-fracture
well production performance.

Ralph and Veatch (1986) present the general con-
cepis of hydraulic fracture treatments economics and
introduce the net present value as a valuable tool for
the optimal design of hydraulic fracture treatment. An
optimal hydraulic fracture treatment design maxi-
mizes the net present value of the revenue after the
treatment, considering the post-fracture production
performance and the treatment costs.

Table | presents a summary of previous work in the
arga of hydraulic fracture optimization, Poulsen and
Soliman (1986) used fluid volume and proppant con-
centration as treatment design variables, with a two-
dimensional fracture propagation model, accounting
for proppant transport and sedimentation. No formal
optimization procedure was used (trial and error),
minimizing the difference between calculated and
desired fracture length and conductivity, Balen et al,
(1988) used as design variables the fracturing fluid,
injected fAuid volume and proppant concentration,
pumping rate, and proppant types. Their work used a
two-dimensional fracture propagation model for pre-
dicting fracture geometry and an economic model. The
optimization procedure was based on a sensitivity
analysis of the design variables with respect 1o net
present value, Hareland el al, (1993) used fluid injec-
tion rate and fracturing fluid as design vanables and a
pseudo three-dimensional fracture propagation model
coupled with a post-fracture production and economic
models. The optimization procedure was similar to that
used by Balen et al. (1988%). Rueda et al. (1994)
considered as treatment design variables the injected
{luid volume, fracturing fluid type, proppant type, and
pumping rate. Their work used a two-dimensional
fraciure propagation model, accounting for fracture
closure behavior, and a post-fracture production model
coupled with an economic model. The optimization
was posed as a mixed integer linear programming
(MILP) problem and solved accordingly. Mohaghegh

et al. (1999) used as design variables the fluid volume
injected, proppant concentration, and fluid injection
rate. Their work used a surrogate model of a three-
dimensional fracturing simulator accounting for frac-
ture propagation and closure behavior, and proppant
transport and sedimentation. The optimization proce-
dure was a Genetic Algorithm.

The analysis of previous work shows limitations
such as the absence of a global optimization procedure
(Poulsen and Soliman, 1986; Balen et al, 1985;
Hareland et al., 1993; Rueds et al., 1994), direct
coupling of the hydraulic fracture models and opti-
mization procedure (Poulsen and Soliman, 1956;
Balen et al., 1988; Hareland et al, 1993), no eror
estimation (all the previous work), limited number of
design vanables (Poulsen and Soliman, 1986; Hare-
land et al., 1993}, not account for fracture closure and
proppant transport and sedimentation (Poulsen and
Soliman, 1986; Balen et al., 1988; Hareland et al,,
1993), and not include an economic model (Poulsen
and Soliman, 1986; Mohaghegh cf al., [999),

This paper presents a methodology called neural
network-based efficient global optimization (NEGO)
developed by Queipo et al, (2000}, for the optimal
design of hydraulic fracture stimulation treatments.
This methodology includes the construction of a * fast
surrogate” of an objective function, whose evaluation
involves the execution of a time-consuming computa-
tional model (hydraulic fracture simulator), based on
neural networks, DACE (Sacks et al., 198%), model-
ing, and adaptive sampling. Using adaptive sampling,
promising areas are searched considering the informa-
tion provided by the surrogate model and the expected
value of the errors.

The DACE surrogate model is initially constructed
using sample data generated from the execution of the
computational model with parameters given by a
Latin hypercube experimental design and a neural
network, and provides error estimates at any point.
Additional points are ubtained balancing the exploi-
tation of the information provided by the surrogate
model (where the surface is minimized) with the need
to improve the surface (where error estimates are
high). The proposed methodology provides a global
optimization method, hence avoiding the potential
problem of convergence to a local minimum in the
objective function exhibited by the commonly used
Gauss - Newton methods, and the computational cost
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imvolved in numencally estimating derivatives and in
the step-by-step movement along given trajectories.
Furthermore, it exhibits an affordable computational
cost, 15 amenable to parallel processing, and is
expected to outperform other general purpose global
optimization methods such as simulated annealing and
genetic algorithms.

2. Problem definition

The problem of interest is an optimization problem
with a typically high number of design parameters and
compuiationally expensive objective function evalua-
tions, Formally, it can be stated as:

find x=eX CRP
such that
Flx) 15 minmized

where (" is an objective function of x, the design

varinbles of a fracture treatment, and X is a set of

constraints, The design vector x, is given by:

» Volume of the stages (¥, V5., ., F,)

= Proppant concentraton increment for the last n
stages (ACpy), ACpaa.. ...ACpy where j=2....,
wh=1,...,n=1)

* Fracturing luid injection rate (&)

* Fluid performance ndex ()

* Consislency mdex Ky

and the set of constraints is:

Xt el S X =X e fromi=12...m

where: ¥ mee: upper bound: x, i lower bound,

Hence, the problem is to find, for a given forma-
tion, the fracture treatment design that will maximize
the net present value of the posi-fracture revenue,
considering the well post fracture production perform-
ance and the treatment costs. The formation is char-
acterized by the following parameters:

= Poisson ratio (b)

* Young's modulus (£}

= Stress in the pay-zone (a;)
* Pay-zone height (H)

= Reservoir permeability (&)

* Reservoir outer boundary radius ()
* Wellbore radius (r,)

* Spurt-loss coellicient (5,)

* Leak-off coefficient ().

* (il volumetric factor (B.).

= Flowing hottomhole pressure ( £,4)
» Reservorr mitial pressure ()

= 0l viscosity ()

The objective function is given by:

Fix] = —NPV(x) (1)

where, NPV is the net present value of the post-
fracture revenue,

To calculate the NPV associated with a specific
fracture treatment, it is fypically necessary 1o execute
a time consuming computational model that includes a
hydraulic fracture simulator, a post fracturing produc-
tion mode!, and an economical model. This issue
places restrictions on the solution approach, given
that the number of objective function evaluations s
limited to a relatively low value considering the time
restrictions typically present in the oil industry.

3. Solution methodology

The optimization strategy includes the construction
of a “fast surrogate™ of an objective function, whose
evaluation involves the execution ol a computational
model, which estimates the net present value of the
revenue for a specific fracture treatment. The compu-
tational model inegrates a hydraulic fracture simula-
tor, a production model. and an economic model,

The hydraulic fracture simulator computes, for a
given formation, the fracture geometry and conduc-
livity resulting from a specific treatment. In this study,
the simulator is based on the GDK (Geertsma and de
Klerk, 196%9) 2D fracture propagation model, and
includes models for proppant transport and sedimen-
tation {Domselaar and Visser, 1974; Daneshy, 1978),
and for the closure behavior of the fracture (Nolie.
1979; Movotny. 1977). The production model (Ray-
mond and Binder, 1967) estimates the posi-treatment
well production according to the increment of the
productivity index. The economic model (Ralph and
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Veatch, 1986) caleulates the nel present value of the
revenue, considerng a production lme horzon and
treptment costs.

30, Hvdranlic fracture simulataor

The inputs to the simulator are the formation
parameters and the treatment design varables. The
simulator computes the fracture geometry and the
proppant transport and sedimentation, during propa-
gation and closure of the fracture. This information is
used to calculate the ratio of post-fracture and pre-
fracture productivity indexes. For a successful treat-
ment this ratio is greater than 1,

This work uses the GDK 2D propagation model
(Geertsma and de Klerk, 19090, which assumes con-
stant tracture height during propagation. The simula-
tor solves a coupled system of partial differential
equations, which model the dilferent physical phe-
nomena involved in the hydraulie fracturing process,

311 Madel equations

1L Fractuee peometry.  Geertsma and de Klerk
(1969) present the equations that model the fracture
peometry, According to the mass conservation prinei-
ple, the mass injected to the fracture must equal the
sumn of the mass accumulated in it and the mass that is
lost due o formation porosity, known as leak-off
Considering as incompressible the fracturing fluid and
the leak-off and spurt loses, the relationship between
the fluid flow £ and the cross section A of the fracture
is expressed by:

rfin,.T i} dAd{xt) .
2
=0ulxn) + 2)
where the loses (J; are given hy:
Hy, d (oL
= e o 25 e | e {3
Qubet) = V-’g_—r.[rl--'- : Fr’::'x(fi'}) 3)

Assiming 4 lingar propagstion of the fracture, the
width W of the fracture is given by:
2y
Wixt) = 4(1 — v P )
E i
This means that at any time, the width is constant in a
vertical section of the fracture,

1T one-dimensional and stable flow is assumed, the
relationship between the Now rate through a vertical
section and the pressure gradient along the fracture
propagation direction is specified as:

Al Qi)™ (5)
b W)™ Ee ’

where 115 given by
o
=2 (2 - —) (6]
s

The fracture geometry during propagation is ohtained
by solving Eqs, (2), (4) and (5) subject w the follow-
ing:

Initial condition : Wx0) =0

Boundary conditions : ({00 = 2,/2 [

WL =10

31102 Proppant transport and sedimentation.  The
proppant are spherical solid particles that prevent the
fracture closure after the injection ceases, Without a
loss of generality, it will be considered treatments of
one stage of pad injection and a maximum of four
stages of mixed Nuid and proppant injection. The
proppant concentration of the imjection fluid at cach
stage, denoted by Cp; i=1..... 5 i5 constant, with
Cpy =0 (Auid without pruppanl] and Cpp =Cp =
Cpy = Cps, However, the proppant concentration along
the fracture inereases because of leak-off and fracre
volume reduction. It is necessary to calculate the
proppant concentration along the fracture at any time.

Domsclaar and Yisser (1974) suggest the following
equation,

Hffp{ Aopiat)

Ol =22l i
- CPEJ.F:IQL{IJ] =10 18]

-.—.»-il:.r )

which can be solved numerically 1o obtain the nor-
malized proppant concentration Cp profile along the
fracture at any tme. Suppose thal g1 time 1, the pad
stage and two stapes of proppant mixtures have been
mjecled mito the fracture, Tt is assumed that different
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stages do not mix. This situation is illustrated in Fig. |,
in which each number identifies one injection stage.
The nommalized proppant concentration at time ¢ of any
point x in a proppant mixture injection stage, denoted
by C pla,), is defined as the ratio of the concentration
Cpla,r) et that point, 10 the concentration ai with the
slage was injected. For poanl xy i P 1:
Cpl Yid)

.

Cpixii) = (9]

A mass balance is used to locate the contact
between two consecutive stages, known as proppant
fronts. The proppant concentration Cplx.s). computed
with the normalized proppant concentration T plx,f)
and the proppant front locations, are used to caleulate
the descend wvelocity of the proppant particles sus-
pended in the fluid, according to Eq. (10):

. (2,4 1)d [Iﬁup ~ '|]F:.| Cplea))

i'I'I'F!r:r. | 0} B2 -Cplra})
(10]
where 1, known as apparent fluid viscosity. is given
by,

2o, 10
=K ¥ . 1)
a I( 3oy J 5

T2,

Bome of the descending proppant parbcles will
grivup on the bottom of the fracture, forming what 15

A HEi-th

- >
s Length

Fig |. MNustration for proppant concentration calculation.

known as proppant bed, and some will become
trapped between the fracture lateral walls after clo-
sure. Smaller closure times and’or lower descend
velocities increase the number of particles trapped
by the fracture walls, which 15 a desiable feature
hecause the resulting fractured producing zone will be
greater, Dameshy (1978) developed a numerical sol-
ution procedure o enlealate the valume of the prop-
pent bed and the volume of suspended proppant, from
the descend velocity of proppant particles. These
results and the fracture closure tme were used i this
work to determing the volume of proppant trapped
between fracture walls.

1.2, Post-fracture production model

This model caleulates the productivity mdex ratio
and cumulative oil production.

120 Productivity indexes rafio calcwlation

The post-fracture productivity index depends on
the geometry after the {racture has closed. This
geometry is obiained by solving Eq. (1) during closure
time, with xt) =0 and assuming that the fracture
wiclth and height decrease a1 the same rate. The cross
section of the [racture at any x has a rectangular shape.

The post-fracture and pre-fracture  productivity
indexes matio is caleulated by applying the equation
developed by Raymond and Binder (1967}, o the
propped fracture divided in N intervals of the same
length along its propagation direction;

e

g |“|_ .-f )
a0 4 W M ||F..r-_'l'l
l Al (i 4 ;ﬂ.i{ r"r_*-- ‘)

AL — 13+ Wia i - .T[_J_g,_)” m{, )

(12}

where Lif), Wenli), Heedi) and A(i) are the length,
width, height, and proppant permeability evaluated in
the ith element.

322 Cumulative off production calewlation
The production rate just before the treatment is
ealeulated using Darcy’s Law for semi-stable flow:

2R H(P— Pur)
By ln (0472%)
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The initial production rate after the fracture treatment.
denoted by {,;, is given by

Q-.lf - 'QLJ,"rJu [14]

To estimate the post-treatment production rate per-
formance, it is assumed a hyperbolic decline curve:

o0t} = Qo1 + maie)™ '™ (15

where o 15 the mibial declination mate and m s @
constant such that G<m=< [,

Defining t.p a5 the initial after the treatment and a
time herizon of Tyears, the cumulative oil production
in BBL duning that time horizon, denoted by COP, is
piven hy

[NES tar+T
COP = f Oft)dr = [
Lat af

% Our (1 + magr) ' ™de. (16
1.3 Econamic model

The net present value of the revenue (NPV..,)
produced by the fracture treatment is calculated,
which is given by:

NPV, = NPV,. — NPV (17

where NPV, is the net present value of the income,
considering the cumulative oil production and the oil

barrel price, and NPVpq 15 the net present value of

the total costs, which include treatment costs, opera-
tional costs, and production duties,

3.4, Optimization strategy

The proposed selution approdch called NEGO,
neural-network based efficient global optimization,
is an improved version of the EGO algorithm (Matlab,
Ver, 5.3 lor the optimzation of computationally
expensive black-box functions,

The proposed solution methodology involves the
[ollwing fve steps;

(1} Constructing a sample of the parameter space
using the Latin hypercube method. The Latin hyper-
cube sampling procedure has been shown o be very
effective for selecting input variables for the analysis
of the output of a computer code (Queipo et al.. 2000).

2y Conducting computer model executions using
the sample lrom the previous step and recording the
ohjective function values.

i3y Constructing a parsimonious neural network
wsing the data from the previous step. The purpose of
this neural network is to capture the general trends
observed inthe data; no ngorous performance criteria
15 placed on the newral network. The input variables of
the neural network are the fracture treatment design
parameters and the outpul vanable 15 the comrespond-
ing objective funchion value,

(4} Constructing a DACE model for the residuals,
that is, the difference between the observed objective
function values, and the neural network responses
using the sample data, These models provide not only
estimates of the residuals values but also of the
respechive ermors, The sumrogate model for the evalua-
tion of the ohjective function is the sum of the neural
network and DACE maadels, Details ol this step will
b given later in this section,

(5) Additional points are obtained halancing the
exploitation of the inlomation provided by the surro-
gate model (where the surface is minimized) with the
need to improve the surface (where error estimates are
high), until stopping criteria have been met, This
balance is achieved by sampling where a figure of
meril is maximized. Details of the figure of meric will
b given later in this sechon.

F4 1 DACE models

These models owe their name, design, and analysis
of computer experiments 1o the title of an article that
popularized the approach (Sacks et al., [989). These
mimdels sugres! o estirnate determimshc functions as
shown m Eqg. (18}

vixd =+ e(x) (18]

where, y is the function to be modeled, u is the mean
of the population, and & is the error with zero expected
value, and with a correlation structure given by:

&)
covisixelx)) = azr::-;p(— Bl xf.‘?:)

b=

(19)

where, p is the dimension of vector x, « identifies the
standard dewviation of the population, and, #, is a
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Burrogate  Mcdel
I, Figore of Merd v

-——

Fig. 2. Mustration of the purpose of the figuse of meni

correlation parameter, which s 8 measure of the
degree of comrclation among the data along the A
direction.

Specifically, given a set of n inpui/output pairs (x,
1), the parameters, u, , and t are estimated such tha
the likelihood function is maximized (Sacks e al
19851, Having estimated these values, the function
eslimale for new points is given by

el =a+r R ' (y—Lu) (20)

where, tha line above the letters denote esimares. '
identifies the comelation vector between the new point
and the poimnts wsed to construct the model, R is the
correlstion matrix among the m sample points, and L
denotes an n-vector of ones.

The mean square error of the estimate is given by:
R I [

Six* =

_ Rl
(1-I'R ﬂ a1

PRL

The model s validaled through a cross-validation
procedure, which essentially makes sure that the
estimates using all but the poimnt being tested and the
actual response values are within an specified numbser
of standard deviations. That is, the matrix R vsed 1o
compute the function and stendand deviation estimates
does not include the pomt being tested. The onginal
EGO algorithm may not cross-validate properly if
therz are trends in the data, in contrast to NEGO
which is expected to subtract any significant trends in
the data. More precisely, the EGO algorithm expects
the data to be trendless and the correlation structure of

the errors to be only a function of the distance vector
between points, When there are trends in the data (as
is frequently the case), this assumption fzils, and the
model will not validate. The NEGO algorithm suh-
tracts possible trends in the datz using @ newral net-
work model.

The benefits of modeling determimistic functions
using this probahilistic approach are: (1) represents a
best linear unbiased estimator, (ii) interpolates the
data, and (i) provides error estimates.

F.4.2, Figure af merf

The figure of merl (more precisely a function ol
merit) reflects o balance of the influence of low
function values and uncertainty. Specifically. the fig-
ure of ment (Jones et al, 1998) used m this work is
given by

['n|n|:_1' Ve I: - .F']rﬁ("r'.“'"‘_ j) " I‘[‘b(_.f,','-lui_ f)

(22}

where @ and o are the cumulative and density normal
dhstribution functions, respectively: G and fare the
minimum current @nd objective function estimate
value, respectively. Eg. {22) establishes the desired
halance of sampling where the response surface {the
predictor) s mimmized (lefl term) and in zones wherz
emror estimates an: bigh (righl temm). Note that the
figure of merit makes reference 10 the objective

Tﬁhlu 2

Reservoir properties (Case Swdy 1)

Variahle Unit Valog

o (-1 03
E (psi) 41"
[ (psz) 000
A (i} ik

ke {md) I

e ift} 200
Fu {imn) 1

5, {galift’y 0.0
(i {ft'min)' @ 040
2, (bbb 1.1
P {pRil &0O0

B {psi) 4000

fa {eph 2
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Table 3

Reservoir properties {Case Study 2)

Yarmahle Limit Value

1 {adtm) 1]
£ {psi) s
. {psi) VL]

Hy (i 120

i, (el s 1R}
e (fth 1 50M)

Py {in} 4

5 {ual/fi) 0,04
ol (fimin ' 0,003
&, (bhlBhRl [
P (i) [EL L]

P (il (RO

T g I

function, so it includes the sum of the output of both
the neural network and the residual models.

Fig 2 illustrates a possible figure of merit of one
varigble. There are two zones where it is desimble o
add additional points: the zone (left) where the objec-
tive function is minimized and the zone (right) where
there is a significant error in the prediction, Hence, the
figure of mert for adding sample points: should be
high in either of these situations,

This surface response approach for global optin-
Zation is expected to outperform competing methods,
in terms of necessary computationally expensive objec-
tive function evaluations, to meet a stopping enterion,

It can identify promising areas without the need of

Table 4
Fracrunng floid densety, and proppant tvpes, dmmeters, densities
gl |:|¢r|:||¢.ﬂh'i|ili:x (Case 5I|.|||I1_.' 1

moving step by step along a given trajectory, In
addition, by providing estimates of the errors at
unsampled points, it is possible o esmblish a reason-
able stopping criterion. Furthermaore, provides a fast
surrogate model that could be used 10 visualice the
relationship berween the sought parameters und the
objective function values and o demify the relative
sigmificance of cach of the parameters,

243 Implementation

The following case studies were solved using an
implementation of the NEGO algorithm in Matlah Ver.
5.3, The subproblems of finding near optimal values for
maximizing likelihood and the figure of mernt were
solved using the DIRECT method (lones ot al., 1993),
Mote that the solution of these subproblems do not
require additional computationally expensive objective
function evaluations. The computer mode] was devel-
oped by the authors, also in Matlak Ver, 5.3,

4, Case studics

The proposed methodology was evalusted using
two case studies, cormesponding to Formations differ-
ing in rock and fluid properties, and geometric param-
elers, The [omation parameters for Case Swmdies |
and 2 are shown in Tables 2 and 3, respectively, The
fracture height for Case Study | {Case Study 2) was
assumed 1o be B0 (U {180 1) with 2 pay zone height of
B0 (120 )

Tahle 3
Fracturing fluid density, ond proppant tvpes, dinmelers, densities
and permeabifites (Case Sady 2)

Froacring flud

Density 1K) kg/m’
Proppant for sopes I and 3

Type 2043 Mesh Bauxile
Trinmietes 0425 .

Densiiy 140 bift"
Permenhility 45004 ag 4004 psi

Prewgganst for spges 4 amd 5

Type 1220 Mesh Bauxne
[Mameter (L33 in,

Thensity 160 it
Permeabilicy 22068 d o 4000 psi

Fractueng M

Density 1000 kg/m’
Proppant for stages I and 3

Type H)- 44 Mesh Bauxie
THimmelen 025 in.

Density L Tt
Permeability 400 d ) psi
FProppant far stages 4 and §

Type 12— 20 Mesh Bauxie
Dipmeter PSS m.

[ensity 160 i
Permeabiliny 1400 o @ 4000 psi
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Fig. 3. Values of the objective function for Case Study 1.

As stated before, the problem is to find, for each
formation, the fracture treatment design that will
maximize the net present value of the post-fracture
revenue. Specifically, the design vector, x, is given by
the fracture treatment parameters:

e \olume of the stages (¥, Fa Fi, Fa, Fa
Proppant concentration increment for the last
four stages (ACp:,, ACPs, ACPas, ACpsy),
Fracturing Muid injection rate | ().

Fluid performance index (i),

Consistency index (A7)

and the set of constraints is given by

100 bbl < F, <500 bhl k=1_.,5

0 lbmigal = ACpy, =4 Ibmigal j=2.... 5,
=4

10 bpm = (), = 50 bpm

03w, =1

00021 Ibf g™ < &= Ibf g™/*

The following assumptions hold: (i) any fracture
treatment is constituted by a first stage of pad injec-

Table &
Best five values of the obiective function found by the NEGO algorthm (Case Swudy 1)
#ler ) ¥ Fy ¥y My ACps, ACp,: ACpas ACpa 0, i1 K v 10" (%)
(hbl)  (kbl)  (bhl)  dbbly (bbl)  {Thangal) (Ibmigal)  (Tmdgal)  (Thmdzal)  (hpm) {ThE 5™
| 43133 166066 300000 43333 43333 100 2. 2. Ll 4333 0as0 D0lse — 1,903
11 43133 IeAshe 300000 6466 43333 200 v 200 .00 4333 0650 00116 — | .BE87Y
48 43333 300K lede6 43333 43533 200 200 2. 2.0 4533 asSG 0018 —1.504
b 433133 I6has  leanh 43333 30000 200 200 2.0 200 4333 DaSE 00lle - 1.911
TH O 43133 30000 30000 43333 30000 333 P 3.3 2.0 4331 hast  08s — 2,00
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Fig. 4. Fracture width propagation during fluid inpection for Case Study 1

tion and a maximum of four stages of mixed fluid 5. Results and discussion
and proppant injection and (ii) fluid and proppant
densities. and proppant types, dizmeters and per- 5.1 Cuase Study !
meabilities are known. Tables 4 and 5 show the cor-
responding values for Case Studies | and 2, respec- Using a Latin hypercube experimental design. an
tively. initial sample of 175 points in the 12-dimensionz!
Widlth (i)
04
ot B
ozt RS ]
'ﬂ.‘ i i i i ;
4] 150 J00 450 600 730
a Len fi
Heighr (1) o gL
100 , . : |
BO -
. |
‘u} " |
20} 1
ot i — + i .
a 150 300 450 600 750
ik}

Fig. 5. Fracture width and beight after elosure for Case Snedy 1,
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Fig. &, Walies of the obgective funchon tor Case Study 2,

input spacc was gencrated to construct the neural
network (NIN) and the DACE models. An additional
sample of 30 points was generated to validate the NN
model. The computational model was executed on all
points to caleulate, for each treatment, the objective
function values. The minimum value obtained within
the initial sample was — | 882 % 10° &,

An NN with architecture 12 % 1 x| was con-
structed and training and validation mean errors of
2.758 X 10° and 3.052 % 107, respectively, were
ohtained after only one training iteration. After the
DACTE model was estimated and validated, the NEGO
algerithm added 80 points. Fig. 3 shows the plot of
objective function values. The points represent the
values comesponding to the initial sample while the
circles correspond to pomnts added by the NEGO
algorbhim, The dotied ling indicates the objective

function value for the best solution found within the
initial sample. Among the points added by the NEGO
algorithm, five (5) are better than the best solution
found within the initial sample, Table 6 includes
relevant information about these five points: number
of iteration, input vector and objective function value.
The best solution found corresponded to the T9th
additional sampled point, and had an objective function
value of 2 % 10 §, which is 9.41% lower than the
minimum value found in the imitial sample. This point
represents an increment of | 229% of the revenoe when
compared to the net present value of 1.7% x 10° 8,
without executing the fracture eatment. Note that the
hest solution was obtained after 254 computationally
expensive ohjective function evaluations,

For the overall best selution found, Fig, 4 shows
the fracture width propagation during fluid imjection,

lablz 7

Best value of the objective Nmetion found by the NEGO algonthm (Case Study 2)

wWler 1 Fa (54 ¥y Ve ACpy Al ACpys ACp., o fp Ky v 10
{bbl) (bol} {bbij (Thl} [LS1 {lbmgal)  (Ihmvgall  (hmvgal)  (bevgal)  (bpmi (-) (bF ™Yy (%)

21 43333 43333 16666 30000 L6666 GLe6GT 200 200 200 43,33 LGS0 (L0033 —4 991
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Fig. 7. Fructure width propagation during Meid mpection for Case Study 2.

Each curve comesponds to o time step. Fig. 5(a) shows
the width after fracture closure and, as a reference, the
width afler the fluid injection finishes (dotted line).
Fig. 5} shows the height aller racture closure,
which coincides with the trapped proppant heighi.
The vertical lines represent proppant fronts. It should
be noted that the proppant front locations correspond

Width {in}
0.4 T

to width discontinuities due to changes in proppant
concentrations between different stages.

3.2 Case Smdy 2

An initial sample of 125 was generated vsing a
Latin hypercube experimental design to construct the

02+

ui}_ -

02+

ﬂ_‘ i 1 i
0 B0 120

Height (ft)

200 :

180

{a)

300 360
Length (1)

240

—h

1501

100
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180
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300 360
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Fig. B, Fractire width and hewght afier closure for Case Studv 2,
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NN and the DACE models, An additional sample of
50 points was used to validate the NN model. The
minimum value within the initial sample points was
of —4.944 % 10°,

An NN with architecture 12 % 1 % 1 was con-
structed and traming and validation mean errors of
8.5068 % 10" and 1.0002 x 10°, respectively, were
obtained after one training iteration. After the DACE
model was estimated and validated, the NEGO algo-
rithm added 50 points. Fig. 6 shows the plot of
objective function values. The points represent the
values comesponding to the initial sample while the
circles correspond to points added by the NEGO
algorithm. The dotted line indicates the objective
function value for the best solution within the initial
sample. Among the points added by the NEGO
algorithm, one (1) is hetter than the hest solution
found within the initial sample. Table 7 includes the
information about this point. This minimum objective
function value, found in 21th iteration, had a value of
~4.99] % 10° S, which is 9.91% lower than the hest
solution found within the initial sample. The hest
solution found represents an increment of 18O of
the revenue, when compared to the net present value
(2.771 % 10* §) obtained without executing any frac-
ture treatment. The best solution found was obtained
after 146 evaluations of the objective function.

For the best overall solution found, Fig. 7 shows
the fracture width propagation during fluid injection
with each curve corresponding to a time step. Fig,
Ria) shows the width after fracture closure and the
width afler the fluid injection finishes (dotted line)
and Fig. #(b) shows the height after fracture closure
{rapped proppant height). The vertical lines represent
proppant fronts and the horizontal lines delimit the
pay zone.

6. Conclusions

o A methodology for the optimal design of
hydraulic fracture treatments has been proposed. The
method includes the construction of a *fast surrogate™
of an objective function, whose evaluation involves
the execution of a time-consuming computational
model, based on neural networks, DACE modeling
and adaptive sampling. Using adaptive sampling,
promising areas are searched considening the informa-

tion provided by the surrogate model and the expected
value of the errors.

» The optimization approach holds promise to be
useful in the optimization of objective functions
involving the execution of computationally expensive
mathematical models and is expected to outperform
competing methods, in terms of computationally
expensive objective function evaluations, necessary
o meetl an stopping criteria. This is becavse it can
identify promising areas without the need of moving
step by step along a given trajectory. Additionally, by
providing estimates of the errors at unsampled points,
it is possible 1o establish a reasonable stopping crite-
rion. Furthermore, it provides a fast surrogate model
that could be used to visualize the relationship
hetween the sought parameters and the ohjective
function values and to identify the relative signifi-
cance of each of the parameters.

® The methodology was tested on two case studies
corresponding o formations differing in rock and fluid
properties, and geometry parameters (12 parameters),
The improvement revenues for the fracturing treaiment
solutions were 1229% and 1800% for the first and
second case, using 305 and 225 objective function
evaluations. The results suggest that the methodology
can be used effectively and efficiently for the optimal
design of hydraulic fracture treatments.

Nomenclature

A Fracture vertical section area
I Initial declination rate
B, Chl volumetric factor

C Leak-off coefficient
COP  Cumulative oil production

Cp Proppant concentration

Cp Normalized proppant concentration

I Proppant diameter

DACE Design and analysis of computer experi-
ments

E Young modulus

F Objective function

e Current best function value

fom Figure of mert

Kl DACE predictor

H Fracture height

H.y Height of the propped fracture after closure
H Height of the pay-zone
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Productivity index after fracture
Productivity index before fracture
Reservoir permeahility

Fluid consistency index

o Proppant permeahbility

n-vector of ones

La Fracture length

NPV Net present value

NPV, Net present value of the revenue
MNPV, Net present value of the income
NPV Net present value of the costs
"y Fluid behavior index

NARERRS S

P Pressure

P Flowing boltemhole pressure

P Reservoir initial pressure

F Average value of P and P,

I vector x dimension

(¢ ] Initial flow mte

s 0xl production rate

0y Flund loses male

e Initial oil production rate after fracore

R Correlation matrix between the n sample
points

r Correlation vector between the new point
and the points used to construct the model

Fs Reservoir outer boundary radius

Fa Well radius

3, Spurt-loss coefficient

.-rE{ x) Mean square érror of the predictor
Time horizon in vears
¥; Volume of the i-th injection stape
K, Proppant particles descent velocity
W Fracture width
W Width of the propped fracture after closure
x Diesign vector
X Set of constraints
DACE response value

s

Svmbals

ACpy  Proppant cencentration change between i-th
and j-th stages

& Emmor in the DACE model

T(x) Time for which the fracture opened at x

u Poizson ratio

" Parameter related to the Nuid viscosity

1 Proppant density

i*m Fluid density

1 Mean of the population

iy Apparent fluid viscosity

e Oil viscosity

e Standard deviation of the population

iy Correlation parameter

i Curmulative normal distibution fumction
@ Density normal distribution function
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