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Abstract

This paper presents a solution methodology for the inverse problem of estimating the distributions of permeability and

porosity in heterogeneous and multiphase petroleum reservoirs by matching the static and dynamic data available. The solution

methodology includes, the construction of a ‘‘fast surrogate’’ of an objective function whose evaluation involves the execution

of a time-consuming mathematical model (i.e., reservoir numerical simulator) based on neural networks, DACE (design and

analysis of computer experiment) modeling, and adaptive sampling. Using adaptive sampling, promising areas are searched

considering the information provided by the surrogate model and the expected value of the errors. The proposed methodology

provides a global optimization method, hence avoiding the potential problem of convergence to a local minimum in the

objective function exhibited by the commonly Gauss–Newton methods. Furthermore, it exhibits an affordable computational

cost, is amenable to parallel processing, and is expected to outperform other general-purpose global optimization methods such

as, simulated annealing, and genetic algorithms. The methodology is evaluated using two case studies of increasing complexity

(from 6 to 23 independent parameters). From the results, it is concluded that the methodology can be used effectively and

efficiently for reservoir characterization purposes. In addition, the optimization approach holds promise to be useful in the

optimization of objective functions involving the execution of computationally expensive reservoir numerical simulators, such

as those found, not only in reservoir characterization, but also in other areas of petroleum engineering (e.g., EOR optimization).
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1. Introduction

The identification of the permeability and porosity

parameters that best match the data (static and dy-

namic) available for a given reservoir is critical for

devising an optimal strategy for the development of oil

and gas fields. The static data makes reference to those

originated from geology, electrical logs, core analysis,

fluid properties, seismic and geostatistics; while the

dynamic data is represented by field measurements

such as, production history, bottom hole pressures

from permanent gauges, water-cut, and gas/oil ratio.

Estimating permeability and porosity parameters

from available data is difficult because of the follow-

ing reasons: (i) in general, the number of parameters

to be estimated are very high, since data is scarce, and

the reservoirs are heterogeneous (permeability and

porosity have spatial variability), (ii) the available

0920-4105/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0920 -4105 (02 )00238 -3

* Corresponding author. Tel.: +58-261-7598408; fax: +58-261-

7598411.

E-mail address: nqueipo@luz.ve (N.V. Queipo).

www.elsevier.com/locate/jpetscieng

Journal of Petroleum Science and Engineering 35 (2002) 167–181



data may have very different scope and nature, and

(iii) the numerical simulation of the reservoir, neces-

sary to assess how well given permeability and

porosity parameters match the available data are

computationally expensive.

This paper presents a solution methodology, called

NEGO (neural network-based efficient global optimi-

zation), for the problem of estimating the distributions

of permeability and porosity in heterogeneous and

multiphase petroleum reservoirs by matching the

static and dynamic data available. The solution meth-

odology includes the construction of a ‘‘fast surro-

gate’’ of an objective function whose evaluation

involves the execution of a time-consuming mathe-

matical model (i.e., reservoir numerical simulator)

based on neural networks, DACE (Sacks et al.,

1989) modeling, and adaptive sampling. Using adap-

tive sampling, promising areas are searched consider-

ing the information provided by the surrogate model

and the expected value of the errors.

The DACE surrogate model is initially constructed

using sample data generated from the execution of

mathematical models with parameters given by a Latin

hypercube experimental design, and a neural network,

and provides error estimates at any point. Additional

points are obtained balancing the exploitation of the

information provided by the surrogate model (where

the surface is minimized) with the need to improve the

surface (where error estimates are high). The proposed

methodology provides a global optimization method,

hence avoiding the potential problem of convergence

to a local minimum in the objective function exhibited

by the commonly used Gauss–Newton methods (Tan,

1995; Landa and Horne, 1997) and computational cost

involved in numerically estimating derivatives, and in

the step by step movement along given trajectories.

Furthermore, it exhibits an affordable computational

cost, is amenable to parallel processing, and is

expected to outperform other general purpose global

optimization methods such as, simulated annealing,

and genetic algorithms (Huang and Kelkar, 1994;

Datta Gupta et al., 1992).

2. Problem definition

The problem under consideration is an optimiza-

tion problem (inverse parameter estimation) with

typically a high number of parameters and computa-

tionally expensive objective function evaluations.

Formally, it can be written as:

find xaXpRp

such that

f ðxÞ is minimized

where f is an objective function of x, the permeability

and porosity parameter vector, and X is the set con-

straint.

The objective function is a measure of the discrep-

ancy between the data (static and dynamic) available

and the response of the mathematical models using the

current set of parameters. Eq. (1) shows a commonly

used form of the objective function (weighted least

square version):

f ðxÞ ¼ ðdobs � dcalcÞVWðdobs � dcalcÞ ð1Þ

where W is a weighting matrix, dobs makes reference

to static and dynamic data available (normalized), and

dcal denotes the corresponding data obtained using a

mathematical model.

Hence, the problem of interest is one of finding the

vector of parameters x that minimizes the difference

between the available data (dobs), and the values

calculated (dcal) substituting x in the appropriate

mathematical model. Note that a reservoir numerical

simulator is necessary for calculating the response

associated with dynamic data (e.g., production his-

tory). As mentioned before, the reservoir numerical

simulator, in general, is computationally expensive

and the number of elements in x is usually high, since

the data is scarce and the reservoirs are heterogeneous.

These two issues place restrictions on the solution

approach, given that the number of objective function

evaluations are limited to a relatively low value

considering the time restrictions typically present in

the oil industry.

3. Solution methodology

The proposed solution approach called NEGO,

neural network-based efficient global optimization,

is an improved version of the EGO algorithm (Jones

et al., 1998) for the optimization of computationally

expensive black-box functions.
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The proposed solution methodology involves the

following five steps.

(1) Construct a sample of the parameter space using

the Latin hypercube method. The Latin hypercube

sampling procedure has been shown to be very effec-

tive for selecting input variables for the analysis of the

output of a computer code (McKay et al., 1979).

(2) Conduct mathematical simulations using the

sample from the previous step and record the response

values associated with static and dynamic data avail-

able, and the objective function values.

(3) Construct a parsimonious neural network using

the data from the previous step. The purpose of this

neural network is to capture the general trends

observed in the data; no rigorous performance criterion

is placed on the neural network. The neural network

model used in this study is the so-called multilayer

(three layers) perceptron. The number of neurons in

the input and output layers are given by the number of

input (porosity and permeability parameters) and out-

put variables (objective function value). The number

of neurons in the hidden layer is settled by limiting the

number of parameters of the model (weights) to be a

fraction of the total number of data points available to

the learning process. This process makes reference to

the identification of a set of weights that, for a given

architecture, minimize the sum of the square of the

model errors; the errors represent the difference

between the neural network model output value and

the objective function value. The learning algorithm

used is a gradient-based optimization procedure called

Backpropagation (Rumelhart and McClelland, 1986).

For an introduction to neural network modeling, see,

for example, Bishop (1995).

(4) The input variables of the neural network are

the permeability and porosity parameters and the

output variable is the corresponding objective func-

tion value.

(5) Construct a DACE model for the residuals, that

is, the difference between the observed objective func-

tion values, and the neural network responses using the

sample data. These models provide not only estimates

of the residuals values but also of the respective errors.

The surrogate model for the evaluation of the objective

function is the sum of the neural network and DACE

models. Details of this step will be given later in this

section.

(6) Additional points are obtained balancing the

exploitation of the information provided by the surro-

gate model (where the surface is minimized) with the

need to improve the surface (where error estimates are

high), until a stopping criteria has been met. This

balance is achieved by sampling where a figure of

merit is maximized. Details of the figure of merit will

be given later in this section.

3.1. DACE models

These models owe their name, design and analysis

of computer experiments, to the title of an article that

popularized the approach (Sacks et al., 1989). This

approach differs from Krigging (in the geostatistics

Fig. 1. Illustration of the purpose of the figure of merit.
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literature; see, for example, Matheron, 1963; Cressie,

1991) in that, the latter, is limited to two or three

dimensions, and does not have a fixed correlation

structure.

These models suggest to estimate deterministic

functions as shown in Eq. (2).

yðxjÞ ¼ l þ eðxjÞ ð2Þ

where y is the function to be modeled, l is the mean

of the population, and e is the error with zero ex-

pected value, and with a correlation structure given by

Eq. (3).

covðeðxiÞ,eðxjÞÞ¼ r2exp �
Xp
h¼1

hh

�
xh
i � xh

j

�2
 !

ð3Þ

where p denotes the number of dimensions in the

vector x, r identifies the standard deviation of the

population, and hh is a correlation parameter, which is

a measure of the degree of correlation among the data

along the h direction.

Specifically, given a set of n input/output pairs

(x, y), the parameters l, r, and h are estimated such

that the likelihood function is maximized (Sacks et

al., 1989). Having estimated these values, the func-

tion estimate for new points is given by Eq. (4).

ȳðxÞ ¼ l̄ þ rVR�1ðy� Ll̄Þ ð4Þ

where the line above the letters denote estimates, r V
identifies the correlation vector between the new

point and the points used to construct the model, R

is the correlation matrix among the n sample points,

and L denotes an n-vector of ones.

The mean square error of the estimate is given by

Eq. (5).

s2ðx*Þ ¼ r2 1� rVR�1r þ ð1� LVR�1rÞ
LVR�1L

� �
ð5Þ

The model is validated through a cross-validation

procedure, that essentially makes sure that the

estimates using all but the point being tested and

the actual response values are within a specified

number of standard deviations. The original EGO

algorithm may not cross-validate properly if there

are trends in the data, in contrast to NEGO, which

is expected to subtract any significant trends in the

data.

The benefits of modeling deterministic functions

using this probabilistic approach are: (i) represents a

best linear unbiased estimator, (ii) interpolates the

data, and (iii) provides error estimates.

3.2. Figure of merit

With reference to Fig. 1, there are two zones where

it is desirable to add additional points. The zone (left)

where the objective function is minimized and the

zone (right) where there is a significant error in the

prediction. Hence, the figure of merit for adding

sample points should be high in either of these

Table 1

Test function (without noise) results for the NEGO algorithm

Test function Dimensions NIO OFE RE (%) | x�xopt |

Branin-Hoo 2 20 42 0.35 0.0161

Hock-Shittkowski 5 2 20 25 0.08 0.0371

HGO 468:1 2 20 22 0.22 0.0023

HGO 468:2 2 20 22 0.021 0.0173

Six-Hump Camel 2 29 59 1.69 0.0476

Hartman 3 3 30 36 0.11 0.0110

Hartman 6 6 72 85 4.08 1.1151

Table 2

Test function (with noise) results for the NEGO algorithm ( fg=f (1+g*randn())

Test function ( f ) g Dimensions NIO OFE | x�xopt | g | x�xopt |

Branin-Hoo 0.001 2 20 35 0.2459 0.0161

Branin-Hoo 0.010 2 20 39 0.2242 0.0161

Branin-Hoo 0.100 2 20 50 0.0616 0.0161

Hartman 3 0.001 3 30 42 0.1195 0.0110

Hartman 3 0.010 3 30 36 0.0822 0.0110

Hartman 3 0.100 3 30 60 0.0791 0.0110
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situations. Specifically, the figure of merit (Jones et

al., 1998) used in this work, is given by Eq. (6).

fomðxÞ ¼ ðfmin � f̂ ÞU fmin � f̂

s

 !
þ s/

fmin � f̂

s

 !

(6)

where U and / are the cumulative and density

normal distribution functions, respectively; and fmin

denotes the minimum current objective function

value. Eq. (6) establishes the desired balance of

sampling where the response surface (the predictor)

is minimized (left term) and in zones where error

estimates are high (right term). Note that the figure

of merit makes reference to the objective function so

it includes the sum of the output of both the neural

network and the residual models.

This surface response approach for global optimi-

zation is expected to outperform competing methods,

in terms of necessary computationally expensive

objective function evaluations, to meet a stopping

criteria. It can identify promising areas without the

need of moving step by step along a given trajectory.

In addition, by providing estimates of the errors at

unsampled points, it is possible to establish a reason-

able stopping criterion. Furthermore, provides a fast

surrogate model that could be used to visualize the

relationship between the sought parameters and the

Fig. 2. Reservoir illustration (Case Study No. 1).

Fig. 3. Schematic representation of the reservoir considered in (Case Study No. 1).

Table 3

Permeability and porosity parameters (Case Study No. 1)

Variable Description Range Units

K1 Permeability in the x and y

directions

450–650 md

K2 Permeability in the x and y

directions

35–55 md

K3 Permeability in the x and y

directions

160–240 md

K4 Permeability in the z direction 52–82 md

K5 Permeability in the z direction.

Layers

22–32 md

P Porosity. Layers 1, 2 0.25–0.37 –
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objective function values and to identify the relative

significance of each of the parameters.

3.3. Implementation and validation

The following case studies were solved using an

implementation of the NEGO algorithm developed by

the authors (NQ, SP, and JC) in MATLAB (MAT-

LAB, The MathWorks). The subproblems of finding

near optimal values for maximizing likelihood and the

figure of merit were solved using the DIRECT method

(Jones et al., 1993). Note that the solution of these

subproblems do not require additional computation-

ally expensive objective function evaluations. The

reservoir numerical simulations were conducted using

a commercial reservoir numerical simulator EXODUS

(EXODUS, T.T. & Associates).

For validation purposes, the NEGO algorithm was

tested using a set of seven standard test functions

(Björkman and Holmström, 1999; Jones et al., 1993,

1998). The results (see Table 1) show that NEGO is

highly competitive. In all cases, it found solutions

with a relative error lower than 5%. This is remarkable

considering the very limited number of objective

function evaluations used. Furthermore, test function

(with noise) results for the NEGO algorithm (Table 2)

show that for significant levels of noise (g=0.001,
0.01, 0.1), the algorithm is still able to identify the

optimum neighborhood.

4. Case study

The NEGO algorithm was evaluated using two

case studies of increasing complexity (from 6 to 23

independent parameters). The case studies consider

reservoirs similar to those found in well-known

benchmark cases (Aziz, 1981; Quandalle, 1993). In

both instances, the dynamic and static data were

obtained assuming the permeability and porosity

parameters were known (later called ‘‘correct’’ val-

ues). Then, the problems were posed in inverse

fashion; that is, given dynamic and static data

associated with a reservoir; what are the parameter

Fig. 4. Reservoir illustration (Case Study No. 2).

Fig. 5. Schematic representation of the reservoir considered in (Case Study No. 2).
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values that reproduce the available dynamic and

static data?

The first case study addresses the integration of

dynamic data (cumulative oil production and gas/oil

ratio), while the second case considers the integration

of both dynamic (cumulative oil production and gas/

oil ratio) and static data (a variogram model). In both

cases, the production data is available yearly, for a

period of 10 years, and in the second case study,the

covariance is calculated using 10 intervals.

4.1. Case Study No. 1

The reservoir under consideration and the coordi-

nate system used, are illustrated in Fig. 2. It is

assumed that production data (i.e., COP and GOR)

Fig. 6. Zones 1–5 in layer 1 (Case Study No. 2).

Fig. 7. Zones 6–10 in layer 2 (Case Study No. 2).
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are available and that certain permeability and poros-

ity parameters are unknown.

With reference to Fig. 3, the reservoir is at a depth

of 8325 ft., has an initial pressure of 4800 psi, and

initial oil and water saturations of 0.8, and 0.2,

respectively. The numerical grid is composed of

10�10�3 blocks in the x, y and z directions. The

injector and producer wells are placed in the blocks

denoted as (10,10,3) and (1,1,1), respectively. The

porosity is assumed to be constant throughout the

reservoir, the horizontal permeability is isotropic, but,

as the vertical permeability, is different for each of the

layers.

In this case, the unknown parameters and the

restrictions on their possible values are presented in

Table 3, and the objective function is given by Eq. (7).

f ðxÞ ¼
X10
i¼1

COPobsi � COPcalci
COPobsi

� �2

þ
X10
i¼1

GORobsi � GORcalci

GORobsi

� �2
ð7Þ

The neural network and DACE models were con-

structed using a sample of 60 points selected using a

Fig. 8. Zones 11–15 in layer 3 (Case Study No. 2).

Fig. 9. Zones 16–20 in layer 4 (Case Study No. 2).
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Latin hypercube sampling procedure. Twenty addi-

tional points were added in the search of the ‘‘correct’’

permeability and porosity parameters.

4.2. Case study No. 2

The reservoir under consideration and the coordi-

nate system used, are illustrated in Fig. 4. It is

assumed that dynamic data (i.e., COP and CGOR)

and static data (variogram model) are available and

that certain permeability and porosity parameters are

unknown.

With reference to Fig. 5, the reservoir is at a

depth of 8375 ft, has an initial pressure of 4800 psi,

and initial oil and gas saturations of 1.0, and 0.0,

respectively. The numerical grid is composed of

10�10�4 blocks in the x, y and z directions. The

producer wells 1 and 2, are placed in the blocks

denoted by (10,1,1), and (1,10,1), respectively. The

injector well is placed in the block (1,1,1). The

porosity varies among layers with 0.30 for layer 1,

0.20 for layers 2 and 3, and 0.10 for layer 4. The

numerical grid was grouped into 20 zones, distrib-

uted among the different layers as depicted in Figs.

6–9.

Permeability is considered to be the same within a

given zone and does not change with coordinate

direction (isotropic).

In this case, the unknown parameters and the

restrictions on their possible values are presented in

Table 4, and the objective function is given by Eq.

(8).

f ðxÞ ¼
X10
i¼1

COPobsi � COPcalci
COPobsi

� �2

þ
X10
i¼1

CGORobsi � CGORcalci

CGORobsi

� �2

þ
X10
i¼1

COVobsi � COVcalci

COVobsi

� �2
ð8Þ

The neural network and DACE models were con-

structed using a sample of 187 points selected using a

Latin hypercube sampling procedure. Eighty addi-

Table 4

Permeability and porosity parameters (Case Study No. 2)

Variable Description Range Units

K11 Permeability zone 1, Layer 1 432–624 md

K12 Permeability zone 2, Layer 1 345–525 md

K13 Permeability zone 3, Layer 1 400–600 md

K14 Permeability zone 4, Layer 1 340–480 md

K15 Permeability zone 5, Layer 1 376–540.5 md

K21 Permeability zone 1, Layer 2 43.2–62.4 md

K22 Permeability zone 2, Layer 2 31.5–49.5 md

K23 Permeability zone 3, Layer 2 40–60 md

K24 Permeability zone 4, Layer 2 34–48 md

K25 Permeability zone 5, Layer 2 37.6–54.05 md

K31 Permeability zone 1, Layer 3 16.2–23.4 md

K32 Permeability zone 2, Layer 3 11.2–17.6 md

K33 Permeability zone 3, Layer 3 16–24 md

K34 Permeability zone 4, Layer 3 12.75–18 md

K35 Permeability zone 5, Layer 3 13.6–19.55 md

K41 Permeability zone 1, Layer 4 8.1–11.7 md

K42 Permeability zone 2, Layer 4 4.9–7.7 md

K43 Permeability zone 3, Layer 4 8–12 md

K44 Permeability zone 4, Layer 4 4.25–6 md

K45 Permeability zone 5, Layer 4 6.4–9.2 md

P1 Porosity. Layer 1 0.27–0.39 –

P2,3 Porosity. Layers 2 and 3 0.14–0.22 –

P4 Porosity. Layer 4 0.08–0.12 –

Table 5

Additional sampled points (Case Study No. 1)

Obs. K1 K2 K3 K4 K5 P f

1 483.33 51.67 200 67 30.33 0.31 0.00037604

2 550 38.33 226.67 57 23.67 0.31 0.00373747

3 616.67 45 173.33 67 27 0.31 0.0420268

4 483.33 38.33 226.67 67 27 0.35 0.08506395

5 616.67 51.67 200 57 27 0.35 0.02255316

6 483.33 38.33 226.67 67 27 0.31 0.02850679

7 550 51.67 200 57 23.67 0.31 0.04083019

8 483.33 45 200 77 23.67 0.31 0.00034579

9 550 38.33 173.33 57 27 0.35 0.00852373

10 550 38.33 226.67 77 30.33 0.31 0.01906443

11 616.67 38.33 200 67 27 0.35 0.01527427

12 483.33 51.67 226.67 67 27 0.31 0.06371478

13 483.33 38.33 200 57 30.33 0.31 0.00348125

14 550 38.33 200 57 30.33 0.35 0.05410506

15 550 38.33 173.33 67 23.67 0.35 0.00800637

16 483.33 45 226.67 57 30.33 0.31 0.03427427

17 483.33 45 173.33 67 30.33 0.31 0.07724744

18 550 51.67 226.67 67 30.33 0.31 0.00908735

19 616.67 45 200 57 23.67 0.35 0.01946102

20 550 45 200 57 23.67 0.35 0.06582813

N.V. Queipo et al. / Journal of Petroleum Science and Engineering 35 (2002) 167–181 175



tional points were added in the search of the ‘‘correct’’

permeability and porosity parameters.

5. Results and discussion

With reference to Case study No. 1, the neural

network was constructed with an 6�2�1 architecture

with a sum of square errors of 5.82e�002, and

9.68e�002, respectively. Additionally, all the points

in the DACE model cross-validated within three times

of the standard deviation. The minimum objective

function value found within the initial sample (60

points) was 2.17e�03. Additional points (20) were

added so that the figure of merit was maximized; from

those points the best solution found (8th additional

sampled point) observed an objective function value

of 3.46e�04, that is an order of magnitude lower than

the best found in the initial sample. The parameter

values and the objective function value for the addi-

Fig. 10. Distribution of the error in parameter estimations (Case Study No. 1).

Fig. 11. Cumulative oil production obtained using the best solution and the ‘‘correct’’ solution (Case Study No. 1).
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tional points are shown in Table 5. The maximum

percentage error in the parameters estimation (K1, K2,

K3, K4, K5, P) is 10%, as illustrated in Fig. 10. The

maximum percentage errors in the estimation of COP

and GOR were 0.18% and 0.45%, respectively. Figs.

11 and 12 shows the excellent agreement between the

values of COP and GOR obtained using the ‘‘cor-

rect’’ parameters and those found by the NEGO

algorithm. Note that the results were obtained using

only 80 computationally expensive objective function

evaluations.

With reference to Case study No. 2, the neural

network was constructed with a 23�3�1 architec-

ture with a sum of square errors of 4.97e�002 and

9.05e�002, respectively. A 98% of the points in the

DACE model cross-validated within three times of the

standard deviation. The minimum objective function

value found within the initial sample (187 points) was

2.16e�02. Additional points (80) were added so that

the figure of merit was maximized; from those points

the best solution found (56th additional sampled

point) observed an objective function value of

1.37e�02, that is approximately 50% lower than the

best found in the initial sample. The parameter values

and the objective function value for the additional

points are shown in Table 6. The maximum percent-

age error in the parameters estimation is approxi-

mately 20%, as illustrated in Fig. 13. The maxi-

mum percentage errors in the estimation of COP

and CGOR, and COV were 0.79%, 6.81%, and

8.09%, respectively. Figs. 14 and 15 shows the excel-

lent agreement between the values of COP and CGOR

Fig. 12. Cumulative gas oil obtained using the best solution and the ‘‘correct’’ solution (Case Study No. 1).

Table 6

NEGO estimates for the permeability and porosity parameters (Case

Study No. 2)

Variable ‘‘Correct’’

value

Bis Error

(%)

Best

solution

Error

(%)

K11 480 474.47 1.152 592 23.333

K12 450 402.384 10.581 435 3.3333

K13 500 472 5.6 500 0

K14 400 361.882 9.529 363.333 9.166

K15 470 495.345 5.392 403.417 14.1667

K21 48 46.577 2.964 46.4 3.3333

K22 45 42.730 5.044 40.5 10

K23 50 45.972 8.056 50 0

K24 40 46.412 16.031 41 2.5

K25 47 49.709 5.764 45.825 2.5

K31 18 20.038 11.32 19.8 10

K32 16 12.418 22.384 14.4 10

K33 20 23.607 18.036 20 0

K34 15 17.219 14.799 15.375 2.5

K35 17 15.959 6.122 16.575 2.5

K41 9 8.455 6.06 9.9 10

K42 7 6.905 1.348 6.3 10

K43 10 10.416 4.168 10 0

K44 5 5.831 16.619 5.125 2.5

K45 8 6.935 13.311 7.8 2.5

P1 0.3 0.304 1.472 0.33 10

P2,3 0.2 0.1904 4.78 0.18 10

P4 0.1 0.0815 18.408 0.1 0

f 0.0216 – 0.0137 –
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obtained using the correct parameters and those found

by the proposed solution methodology. Fig. 16 depicts

the agreement between the desired variogram and that

obtained using the NEGO algorithm. Note that the

results were obtained using only 267 computationally

expensive objective function evaluations.

Observe that it is possible (e.g., Case study No. 2) to

have significant differences in the parameter estimates

while having a very small value of the associated

objective function. This is a typical pathological feature

(non-uniqueness) of the solution of inverse problems

constrained by very limited data.

Fig. 13. Distribution of the error in parameters estimations (Case Study No. 2).

Fig. 14. Cumulative oil production obtained using the best solution and ‘‘correct’’ solution (Case Study No. 2).
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From the results it is concluded that the method-

ology can be used effectively and efficiently for

reservoir characterization purposes. In addition, the

optimization approach holds promise to be useful in

the optimization of objective functions involving the

execution of computationally expensive mathematical

models (e.g., reservoir numerical simulators), such as

those found, not only in reservoir characterization, but

also in other areas of petroleum engineering (e.g., EOR

optimization).

6. Conclusions

b
A global optimization method for integrating

static and dynamic data into a reservoir description

Fig. 15. Cumulative gas oil ratio obtained using the best solution and ‘‘correct’’ solution (Case Study No. 2).

Fig. 16. Covariance values obtained using the best solution and ‘‘correct’’ value of horizontal permeability parameter.
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called NEGO has been proposed. The method includes

the construction of a ‘‘fast surrogate’’ of an objective

function whose evaluation involves the execution of a

time-consuming mathematical model (i.e., reservoir

numerical simulator) based on neural networks, DACE

modeling, and adaptive sampling. Using adaptive

sampling, promising areas are searched considering

the information provided by the surrogate model and

the expected value of the errors.

b
The results suggest that the NEGO algorithm can

be used effectively and efficiently for reservoir char-

acterization purposes. In addition, the optimization

approach holds promise to be useful in the solution of

inverse problems involving the execution of computa-

tionally expensive mathematical models, such as those

found, not only in reservoir characterization, but also

in other areas of engineering.

b
The NEGO algorithm is expected to outperform

competing methods, in terms of computationally

expensive objective function evaluations, necessary

to meet a stopping criteria. This is because it can

identify promising areas without the need of moving

step by step along a given trajectory. In addition, by

providing estimates of the errors at unsampled points,

it is possible to establish a reasonable stopping crite-

rion. Furthermore, provides a fast surrogate model

that could be used to visualize the relationship

between the sought parameters and the objective

function values and to identify the relative signifi-

cance of each of the parameters.

b
Although the proposed approach was not tested

using a noisy static and dynamic data, the method

holds promise to be effective and efficient under the

expected noisy conditions (non-white) present in a

reservoir description. This is the subject of current

investigation.

Nomenclature

DACE Design and analysis of computer experiment

x Parameters vector

X Set constraint

f Objective function

W Weighting matrix

dobs Reference to static and dynamic data avail-

able (normalized)

dcal Denotes the data obtained using a mathe-

matical model

y DACE response value

l Mean of the population

e Error in the DACE model

p Number of dimensions in the vector x

r Standard deviation of the population

hh Correlation parameter

rV Correlation vector between the new point

and the points used to construct the model

R Correlation matrix between the n sample

points

1 n-vector of ones

fom Figure of merit

U Cumulative normal distribution function

/ Density normal distribution function

ȳ DACE predictor

fmin Current best function value

s2(x) Mean square error of the predictor

COP Cumulative oil production

CGOR Cumulative gas oil ratio

GOR Gas oil ratio

COV Covariance

BIS Best initial solution

NIO Number of initial observations

OFE Objective function evaluations

RE: Relative error

|x�xopt || Distance to the optimum value

| x�xopt ||g Distance to the optimum value (test

function with noise)

g Noise factor

randn() Random number generator normally distrib-

uted N(0,1)

Subscripts
h Coordinate directions

obv Observed

cal Calculated

Superscript
* New point

V Transpose
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