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Absiract

This paper presents a solumtion methodology for the optimization of geometnical and operational pammeters of SAGD
processes in a heerogencous and mubliphase peroleum reservorr. The optmeaton refers o the maximization or mmomization
of performance measures such as net present value, cumulative oil production, or cumulative steam injectead. The solition
methadology imcludes the consruction of a “fast sumogale™ of an abjective function whose evaluation involves the execuiion
of a time-consuming mathematical model (ie. reservoir numerical simulator) based on neural networks, DACE modeling. and
acdaptive samplmg. Using sdaphive sampling, promising aréns are searchad considering the information provided by the
surrogate model and the expected value of the errars. The proposed methodology provides o glohal optimization method, hence
avording the powentinl problem of convergence (o a local rummum in the objectve function cxhibied by the commonly Gouss
Newton metheds, Furthermore, it exhibits an aftordable computitional cost, 15 amenable to parllel processing, and is expected
o onitperform other general-purpose global oplimization methods such as simulaled annealing, genetic algarithms, and pattern
search methods, The mathodolopy i= evalumed using 5 case study with verical spacing, steam-imjeciod enthalpy, mjection
pressure, and subcooling a8 the sought pammeter values in 8 SAGD process tha optimize & weighted sum of cumulative ol
production end cumulative steam injected for a selected reservoir, From the results, it is concluded that the methodology can be
used effectively and efficiemly far the optimization of SAGD processes. In addirion, the optimization appraach holds promise to
be useful in the optimization of objective functions mvolving the execution of computationally expensive meservoir mimeencal
simalntors, such s those found not only m ol recovery processes, but also in other arcas of peirolewm engineenng (e g
hydraulic fracturing), © 2002 Flsevier Science BY. All rights reserved
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L. Introduction magnitude of these resources worldwide (approxi-

mately 6 million bhl). A major part of these resources

There is considerable interest m effective oil recov-
ery mechanisms for heavy oil and bitumen due 1o the
decline of conventional oil reserves, and the estimated
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are localed in Venezuela, Cenada, and the United
States (Singhal et al., 1994).

While the use of horizontal wells has improved the
recovery of heavy oil, the ultimate oil recovery
remains unsatisfactory due o the low mobility of
the crude at reservoir conditions. Different alternatives
have been proposed in the last three decades for
improving the flowing capacity of heavy oil and
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impriwve il recovery, Examples of these alternatives
are evelic steam stimulation (C35), steam drive, in
situ combustion, and SAGD. The lalter could be
effective even in teservoirs contaiming highly viscous
il or bitumen {Jiang et al., 1998) and have proven Lo
be economucally viable at a variery ol pillat (Butler,
1994 Mendiea et al., | 99%) pnd commeroal recovery
projects (Butler, 1994, typically achieving oil recav-
eries of over 50% from the well pattern with & steam.
cil ratio of 2.5 1o 4 (Jiang et al., 1998). See the work
by Butler (1994) and the references contained in it for
detatls of the SAGLD concepr and mechanisms.

The performance of the SAGD process can be
sipnificantly alTected by the selection of the geomet
rical and operational parameters. Examples of the
former are the vertical spacing, lengths of the pro-
ducer and injector wells, and the horizontal separation
between well pairs; the latter include parameters such
as steam-injected enthalpy, imjection presswre, and
Hubcnuliug. Even though there have been signilcant
eontributions regarding screening of reservoir candi-
dates {Smghal et al., 1996; BEdmunds and Suggmert.
1993, theoretical aspects {Butler, 1987, 1994}, ana-
Iytical and numerical modeling (Butler, 1985, R,
1992; Scott Ferpuson and Butler, 1988), laboratory
experiments (Yang and Butler, 1992; Nasr et al.
2000, the optimal or near optimal selection of the
aforementioned parameters have been addressed only
by a few sensitivity studies (Kamath and Harzigna-
o, 1993, Kisman and Yeurng, 19957,

Kamath and Hatrignation [ 1993), using a numer-
icil two-dimensional model that accounts for reservoir
heterogensities, conducted & sensitivity study of a
SAGD provess which considers the relative mflucnce
with respeet o a base case of different parameters
such as porosity, absolute permeability, sleam temper-
ature, steam guality, horzontal well length, injector’
praducer spacing, shale barmiers, and lateral well
spacing, among others. The smdy establishes percent
recovery and oil'steam ratio os performance messures.
Kismun and Yeuny (1995) performed a similar study
wsing a two-dimensional base case numerical model
that quantifies the relative influence of factors such as
thermal conductivity, flow barriers, oil viscosity, rel-
ative permeability, solution gas, well placement,
among others. Note that these ure both sensitivily
studied that do nol address the formal ophmal setting
of peometrical and operational parameters.

This paper presents a solution methodology called
neural network-hased efficient global optimization
(NMEGOY for the optmmizanon of the geometneal and
aperational pacameters in a SAGD process, such that a
given perforimance measure is minimieed. The solu-
tinn methodology mcludes the construction of a “fast
surragate” of an objective function whose evaluation
invalves the execution of a nme-consuming mathe-
mabwcal model (e reserveir numernical  simelator)
based on newral petworks, DACE (Sacks et al,,
1989) modeling, and adaptive sampling. Using adap-
tive sampling, prommsing areas ane searched consider-
ing the information provided by the sumogate model
and the expected value of the arrars,

The DACE surrogate model 1= initially constructed
using sample data gemerated from the execation of
mathematical models with parameters grven by 2 latin
hypercube experimental (LHC) design and a neural
nefwork, and provides ermor estimates sl any poinl.
Additonsl poings are obtwined balancing the explon-
ration of the information provided by the surrogate
model (where the surface 13 minimzaed) with the need
w improve the surface (where ermor estimales are
fgh), The proposed methodology provides & global
optimization method. henee avoiding the potential
problem of convergence 1o a local minimum in the
ohjective function exhibited by the commonly used
CGauss—Mewton metheds (Tan, 1995; Landa and
Home, 1997), and computational cost involved in
numerically estimating derivatives, and in the step
by step movement along given trajectones. Further-
mote, it exhibits an affordable computational cost, is
amenable 1o paraliel processing, and s expected o
outperform other gencral purpose global optimization
methods such a: simulated annealing, penenc algo-
rithms (Hoang and Kelkar, 1994; Datln Gupla e al,
19923, and parten search methods (Lewis and Torc-
zon, 1999),

2. Problem definition

The optimization of SAGD processes 15 8 complex
task. The complexity is associated with a time con-
suming and limited number of objective function
{performance measure) evaluations, o potentially high
number of parameters, and # nonhnesr solution space
Performance measures such s net present value,
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Surrogate Model
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Fig 1. Hlustration of the purpose of the figure of menl,

cumulative oil production, and cumulative steam
injection require computationally expensive reservoir
numerical simulations restricted in number given the
time constraints typically present in the oil indusiry.
The number of geometrical (e.g. vertical and horizon-
tal spacing, and wells length) and vperational param-
eters {e.g. subcooling, sieam-injected enthalpy,
injection temperature, eic.) 1o be considered may be
significant, and solutions may be needed under differ-
ent economic and reservoiroil property scenarios. In
addition, the nonlinear nature of the process makes the
identification of optimal scttings through sensitivity
siudies (as it 15 wsually performed) not possible.
Formally, il can be wrtlen as:

find x= X C R such that f(x] 15 minimized

where [ 15 a mathematical function {objective fune-
tion) of x, the geometrical and operational parameter
veetor, and X is the set constraint. Hence, the problem
of interest is one of finding the vector of parameters
that minimized a given performance measure of a
SAGD process subject to a set constraind,

3. Solution methodology

The proposed solution approach called NEGO
(Queipo et al, 2000) is an improved version of the

EGO algorithm (Jones et al,, 1998) for the optimiza-
tion of computationally expensive black-box func-
tions.

The proposed solution methodology involves the
following four steps,

(1) Construct & sample of the parameler space
using the latin hypercube method. The latin hypercube
sampling procedure has been shown to be very
effective for selecting input variables for the analysis
of the output of a8 computer code (McKay et al,
1979).

(2) Conduct mathematical simulations using the
sample from the previous step and obtam the objective
[unction values.

(3) Construct a parsimonious neural network (mul-
tilaver perception) using the data from the previous
step. The purpose of this neural network is to capure
the general trends observed in the dala; no rgorous
performance eriterion 15 placed on the neural network.

Table |

Paramcter restnctions {case study)

Parameter  Description Range Lints
Min Max

Ty 1'4-"L1'[I:.'i|t np.a:.‘::ug ul- WI..‘E|:_< k| | 3 m

X3 Impection pressure 1000 4000  kPa

X3 Sweam-inrected enthalpy 1980 25E0 klikg

X4 Subcooling 3 M "
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Fig, 2. IHustration of the grd used in the numencal siimulations {(case study).

(4) Construct a DACE madel for the residuoals, that
is, the difference between the observed objective
function values, and the neural network responses
using the sample data. These models provide not only
estimates of the residuals value but also of the
respective errors. The surrogate model for the evalua-

Table 2
Reservoir data and petrophysical properties (case study)
X ¥ i Units
Ciridblocks 40 ] 54
Grdblock size L5 1500 1 m
Reservoir size a0 1500 54 m
Kock compressibility LODE—T kpPa~!
Raock heat capacity 23000 klm' K
Rock thermal conductivity 147 D mEK
Gas— il comtact depth |6k m
Regervoir initial lemperature 15 o
Raeservoir initial pressure 300 kPa
il
Thesmal Capacity 48 Klkpk
Thermal Expansion TOE—=5 g1l
Density 1029 kg/m®
Compressibility 72E—7 kPa™'

tion of the objective function is the sum of the neural
network and DACE maodels, Details of this step will
be given later in this section.

(5) Additional points are obtained balancing the
exploitation of the information provided by the surro-
gate model (where the surface is minimized) with the
need to improve the surface (where error estimates are
high), until a stopping criterion has been mel, This
balance is achieved by sampling where a figure of
merit is maximized. Details of the figure of merit will
be given later in this section,

34 DACE models

These models owe their name, design. and analysis
of computer experiments to the title of an article that
popularized the approach (Sacks et al., 1989). These
models sugpest to estimate deterministic functions as
shown in Eq. (2).
yixg) = p+elx) (2)

where y is the function to be modeled, u is the mean
of the population, and & is the error with zero expected
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Table 3

Crenlogical model (case study)

Laver Hortzontal permeabilite “erticnl permentility Porosity Thickness (m) Initial 5, Imitial 5,
1 1500 450 0.2 54 015 0.85%

value, and with a correlation structure mven by Eg.

(3)

P
cov{e(x, ) ilx;)) = oexp (— z By (x* — .g"’jl)

=1
(3)

where p denotes the number of dimensions in the
vector x, o identifies the standard deviation of the
population, and tl, is a correlation parameter, which is
a measure of the degree of correlation among the data
along the h-direction.

Specifically, given a set of n input/output pairs
(xv), the parameters, g, o, and { are estimated such
that the likelihood function 1 maximized (Sacks et al.,
1989). Having estimated these values, the function
estimate for new points is given by Eq. (4).

Fx) = i+ RV = L) (4)

where the line above the letters denote estimates, r'
identifies the correlation vector between the new point
and the points used to construct the model, R is the
correlation matrix among the » sample points, and [
denotes an n-vector of ones.

The mean square error of the estimate is given by

Eq. (5).

(1-L'R'r)

St =a{l—r R 'r+
(x*) IRL

(5}

The model is validated through a cross-validation
procedure that essentially makes sure that the esii-

Tahie 4
Owverburden and underburden charactenstics (case study )
Thickness  Temperature  Heat Thermal
{m) [ e capacily conductivity
(kJa'/K) (kD m K)
Owerburden A0 15 2390 14645
Underburden 60 ] 2390 23328

mates using all but the point being tested and the
actual response values are within an specified number
of standard deviations. The original EGO algorithm
may not cross-validate properly if there are trends in
the data, in contrast to NEGO, which is expected to
subtract any significant trends in the data,

The benefits of modeling deterministic functions
using this probabilistic approach are: (i) represents a
best linear unbiased estimator: (i) iterpolates the
data; and (iit) provides error estimates.

3.2, Figure of merit

With reference to Fig. 1, there are two zones where
it is desirable to add additional points. The lefl zone is
where the objective funciion is minimized, whereas
the right zone is where there is a significant error in
the prediction. Hence, the figure of merit for adding
sample points should be high in either of these

Tabke 5

Relative permeability data (case study)

Water—ail Ligud — gas

Sy Kpw Know 5 KR Ko
(.15 (.00 10406 0.5 (.85 LRLH
020 (1,000 (LRR2 .20 0. 750 {10000
025 0.0032 (L2000 (.25 (1630 {113
(130 000 0720 .30 0.al2 0.8
.35 0013 [h.&0h 035 .510 {120
.40 0025 470 3,400 {1,400 (038
.45 0,044 0,350 45 (0.298 {1.(F56
(150 0070 0. 240 050 0.204 (1.056
(.55 0, 1104 0165 .55 {140 {105
(1.0 0, 148 (093 (LR IR RL 0075
(.65 (0,204 NI (haS (0.0496 .090
0.70 0271 (L0000 070 0057 0.137
(175 0352 LA T 075 0,052 0.199
(.80 0447 .00 (IR 0038 0.257
.8S (559 (IR .85 IRIIR [ERY
0.90 6ET (LIMI0 [RRH] LI ERL] 454
(3,45 (434 [N (.05 (0.005 {1624

1.00 100G (000 1.00 (.00 | .00
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Fig. 3. [llustration of o1l viscosity & temperuture,

situations. Specifically, the fgure of ment (Jones et
al., 1998) used in this work is given by Eq. (6).

fom(x) = (fuin —f | @ (M) R (ﬂm"v_f)

(6)

where & and ¢ are the cumulative and densily normal
distribution functions, respectively, and f, denoles

Vertical spacing | X4, )
Pressure { X5,/
Enthalpy { x4}

Subcooling | Xz )

-21,3835

the minimum current objective function value, Eg. (6)
establishes the desired balance of sampling where the
response surface (the prediclor) is minimized (left
term) and in zones where error estimates are high
(right term). Note that the figure of merit makes
reference to the objective function so it includes the
sum of the output of both the neural network and the
residual models,

3.3. Final remarks

This surface response approach for global optimi-
zation is expected to outperform competing methods,
in terms of necessary compuiationally expensive
objective function evaluations, to meet a stopping
criterion. It can identily promising areas without the
need of moving step by step along a given trajectory.
In addition, by providing estimates of the errors at
unsampled points, it is possible (o establish a reason-
able stopping criterion, Furthermore, it provides a fast
surrogate model that could be used to visualize the
relationship between the sought parameters and the
objective function values, and to identify the relative
significance of each of the parameters,

3.4, Implementation

The following case study was solved using an
implementation of the NEGO algorithm developed

{/“'_ ., Objective function ( f,)
b3

J:‘. >

(0.3195

Fig, 4. Weural network architectiure amd weighis {cuse study)
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by the authors (Queipo et al., 20007 in MATLAR (The reservoir numerical simulator EXOTHERM (T.T. &
MathWorks). The subproblems of finding near optimal Associales).

values for maximizing likelihood and the Ggure of

merit were selved using the DIRECT method {Jones et

al., 1993), Note that the solution of these subproblems 4. Case study

does not require additional computationally expensive

objective function evaluations. The reservoir numer- The NEGO algorithm was evaluated using a syn-
ical simulations were conducted vusing a commercial thetic problem having geometrical and operational
Tuhle &
Initial sample (case study)
Run Vertical Pressure Enthalpy Subronling COP sl f
spacing (m) ikPu) kIkg) =) (1LOE3 m') (LOE3 1)
| I 3756 6000 2ETE A0 26,7450 154, 7980 542 dnli (L5418
2 4 [GEL R 2h 100 11.2E80 6L END 28622000 — L1941
3 7 3166, 3006 245000440 20,8050 125 K620 S 9d40) — (L4L5T
- 3 1305 004 2421 6000 TAIDE 63,1220 257 9800 — L2097
5 12 266 SO0 2317100 21.3130 952280 3287300 ~ [0.3425
6 9 191 6. () 23072000 14,4160 Al 1630 242 9800 — (13037
7 12 18277000 2477.0086 210210 45.5830 1475400 (L1626
B 9 1 (36, | (D 22280004 18,7080 10,5484 43,1000 — (L0274
k 14 A3EE E000 2055, D000 21.9140 1264040 sl 52000 (L3 78k
10 11 [ 32550000 243600440 18.9150 40780 383004 — (L0219
11 4 32E5 00N 2285 404 8.7497 1224640 5624500} — (L3935
12 9 2718504040 1984 300 25,1320 1158020 B0 34040 — (L3668
13 5 TOEI2_TOHHD 20000 9hE6S 51,5840 246, 5900 — L1544
14 14 1514700 20909 4044 11.4320 31230 O 5500 — (L0027
15 10 32242000 21 TR GO 22920 1 34928440 G 620 — (L4599
i6 15 30 8000 2364 Tl 62237 H6,2820 3540, 244060 — (12005
17 4 2356600k 124,600 12.97%) 68, 560 417 5606 —[.1799
1% T S24, SO0 2403 KA 23.5410 12565 054100 - L4456
19 il 155300106} ZAR 204 25,7070 68 9870 2734200 —(.2331
20 10 2235 WM 254500400 11.49350 Lk 6k 36H.9500 — (L3589
21 13 | 16360080 2077 2 00D 20,0059 1.2260) o4 B9 LI
22 9 27620000 22935 30H) T6ED 4T3 A1, 1200 — (13393
2 13 3656, T 201390040 13.6350 1363700 698 G600 — (L4149
24 13 292450060 2491, 7000 29, 3o 1M, 328100 ER — (L3R
25 13 38255000 23410000 243860 1535680 GRI G300 — 05035
F. I 1 Tz, BO00 2472 80040 26,7620 5H.4750 14 5400} —(0.2092
27 L] 1 SRU_40HH 2252 1K 14,1380 4492000 2R 13000 — 0.1325
28 10 ZROE. 3000 1995, 3000 19,7250 1237260 TL0. 5506 —0,3473
29 B 1267 40400 205 1.0000 176530 56,3310 2376600 — 1764
k1] 12 | 822.7(HH 2153.0000 10,5140 513570 2147806 k1721
3 8 HTh R0 2324, 1080 5.1645 1 38,9060 547 9400 — (4795
32 4 21153000 2555 5000 16.0960 T2 9800 287 2300 (2478
33 T 2427 DEHN 22632000 16,6620 10T B3940 14 0900 — (L3743
34 E} AEEG 00 233R.3000 170090 72,4230 450 8800 = [.187T1
35 5 25144000 23080000 278760 92,0440 3F5.0100 —L3NT3
a6 5 34537000 2163 R0 BRI 104, TR0 A 12000 — 02737
37 7 2293 5000 23 35000 154120 104, 6670 4517506 — (L3453
3K 14 TE20.0000 2027 4000 2380650 1 38,6820 ol 5700} — [.4364
39 b 93550000 2439000 28,5230 143 6E f22.4500 — (L5011
40 h 2164.1000 2105, (0T 63564 QL8120 T 4000 — (L2990
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Table 7

DACE muodicl parameters corresponding 10 the imitial sample (case
study)

i fla ity il I i

0000 1L04ISE—5

1OWITE—5 00021 00134 00083

parameters: vertical spacing, injection pressure,
steam-injected enthalpy, and subcooling, with ranges
as specified in Table 1. The objective function {given
by Eg. (7)) to be mimimized s a8 weighted sum of
normalized values of cumulative oil production (COP)
and cumulative steam injected (CS1).

oy B - ,
flx] = ECUP-I-E(‘JI (7)

The weights { — 0.75 for COP and + .25 for CS1)
reflect a preference structure and the intend to max-
imize COP and minimize CS1. The values of COP and
CS1 are caleulated afier a 5-year production period.

An illustration of the 2D reservoir simulation grid
under consideration and the coordinate system is
depicted in Fig. 2. The grid is composed of
40 % 1 % 54 blocks in the x-, y-, and =-directions,
respectively, with symmetry with respect to the z-axis.
The producer well is placed in the block denoted as
(1,1,49), while the injector well 15 placed in a block
within the blocks (1,1,35) to (1,1,47); both wells are of
1500 m length. The reservoir is at a depth of 00 m. has
arl initial pressure of 500 kPa. and initial oil and water
saturation of (L85 and 0.15, respectively. Furthermaore,
the porosity is assumed to be constant throughout the
reservoir and equal to 0.2, the horizontal permeability
is isotropic and equal to 1500 md and vertical perme-
ability is equal to 450 md. The initial temperature of the
reservoir 15 15 °C, Further details of the reservoir and
fluid data are presented in Tables 2-5 and Fig. 3.

The neural network (Fig. 4) and DACE model
were constructed using an imitial sample of 40 points
(Table 6) selected wsing a latin hypercube sampling
procedure. The DACE model parameters correspond-
ing to the initial sample can be found in Table 7.
Fifteen additional points were added in the search of
the optimum parameters. The weights in the neural
network resulted from the application of a leaming
algorithm (Levenberg —Marquardt) on the normalized
initial sample. The input and output variables i the

neural network were normalized using a standard
statistical and linear transformations, respectively,

5. Results and discussion

With reference to the case study, the parsimonious
neural network has a 4 % 1 % | architecture with a
mean square normalized error of 3.657TE — 2; all the
points in the DACE model cross-validated within
three times of the standard deviation.

The initial sample also shows (Table 8) the sensi-
tivity of the objective function to the parameter
selection with COP and CSI in the intervals [2.2E3
m®,154.8E3 m’]. and [5.0E3 m",710.6E3 m'], respec-
tively. The minimum objective function value found
within the mitial sample (40 points) was — (L5418
which corresponds to a COP of 154.8E3 m” and a CSI
of 592.5E3 m”; the associated parameters values for
vertical spacing, injection pressure, steam-injected
enthalpy, and subcooling are 11 m, 3756.6 kPa,
2578.4 klkg, and 29.7 °C, respectively.

Additional 15 points maximizing the figure of merit
were added (see Table 9). From those ponts, the best
solution found (second additional sampled point)
observed an objective function value of — 0.5537,
which is slightly better than that corresponding to the
initial sample (2.19% lower) with a COP of 1 56.9E3 m’
and a CSI 589.0E3 m” with similar parameter values.
Changing parameter values with respect to the overall
best solution lound or extending the optimization
process of the figure of merit did not improve the
objective function value: all of which suggest the cited
solution is in fact near optimal.

The parameters associated with the optimal or near
optimal solution found could not have been anticipated
because of the complex nonlinear interaction among
the selected parameters and the objective function.

Tahle &
Characierization of objective fumction values within the inetial
sample (case study)

Min Max Mean Standard
(LOE3m"y  (LOE3m"Y]  {1O0E3m')  deviation
{1LOE3 m™)
COp 223 1 54, Bib BOL30 42.07
U5l 4,99 T10.55 392 62 20083
I 0 — {15414 — 02907 0. 1427
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Tablz 9
Additional sampled points (case study |
Hun Vertical Pressure Enthalpy Subcooling cop sl I

spacing (m} {kPa) (kg 10 (1LOE3 m') (1L0E3 m')
NEGO] 10 37592593 24800000 2809067 1541330 6441 5000 — L3211
MNEGO2 11 ATEG 2503 25770424 28,1310 1546, 9660 SEE 00 (L5517
NEGO3 11 374691340 I5TR_THS4 253189 155.5530 6031300 — L5418
NEGO4 11 3759,2593 25T6.25%63 27,652 1416320 4603640 {15235
NEGODS 15 37304527 25612071 28.49ThY 1173830 43653000 — (14132
NEGOH 7 24259250 2265.1852 166770 | 146570 434 16 13809
MEGDT 12 37222323 J4RTA0T4 249074 153.4730 6204700 —,5254
MEGOS 7 31666667 245005610 133276 1298720 4947 [ 04539
MNEGOR 10 316k BN 24506752 S 143.5830 ] 50 — 4TRS
NECGOID 4 3675812 2450.1875 50019 S5.0670 451.9400 — {1, 2980
NEGOL] 15 31652044 24623503 S RUETHO 24T 14400 — 11,3006
NEGOT12 10 316520 2450.6507 5.0019 1465280 6119200 — L4943
NEGOH 3 1 EXT N 245014618 SAEN S 1213610 242 6300 — {1436
NEGO14 12 1167.7336 24557252 TTTh 123.1230 4194200 — {14475
NEGOH] & 4 Jlelame? 2456.5280 5.0 112 1580 452.00100 — 03820

Selecting maximum parameter values results in 70%
lower COP and 72% lower CSI; maximum parameter
values for injection pressure, steam-injected enthalpy
and subcooling, and minimum vertical spacing trans-
lates in 52% lower COP and 36% lower CSI; maximum
parameter values for injection pressure, steam-injected
enthalpy and subcooling, and the frequently used
vertical spacing of 5 m resulted in 22% lower COP
and 16% lower CS1; finally, mean parameter values
provided 30% lower COP and 20% lower CSI. All of
these alternatives provide higher objective function
values.

6. Conclusions

« A global optimization method for the evaluation
of the operational parameters of SAGD process called
NEGO has been proposed. The methed includes the
construction of a “fast surrogate”™ of an objective
function whose evaluation involves the execution of
a time-consuming mathematical model (i.e. reservoir
numerical simulator) based on neural networks,
DACE modeling, and adaptive sampling. Using adap-
live sampling, promusing areas are searched consider-
ing the information provided by the surrogate model
and the expected value of the errors,

# The results sugpest that the NEGO algorithm can
be used effectively and efficiently for improved oil
recovery purposes. In addition, the optimizition ap-

proach holds promise to be uscful in the optimization
of objective functions involving the execution of com-
putationally expensive mathematical models (e.g. res-
ervoir numerical simulators), such as those found not
anly in oil recovery processes, but also in other arcas of
petroleum engineering (¢.g. hydraulic fracturing).

» The NEGO algorithm is expected to outpertorm
competing methods in terms of computationally
expensive objective function evaluations necessary
to meet a stopping criterion. This is because it can
wdentify promising areas without the need of moving
step by step along a given trajectory. Furthermore, it
provides a fast surrogate model that could be used 1o
visualize the relationship hetween the sought param-
eters and the ohjective function values, and 1o iden-
tify the relative significance of ecach of the para-
melers,

Nomenclature
DACE Design and analysis of computer experiment
x Parameters vector

X Sel constraint

T Ohjective function

I NEGO objective function predictor
W Weighting coefficients

1 Mean of the population

B Ermor in the DACE model

fu MNumber of dimensions in the vector x
r.r Standard deviation of the population
a; Correlation parameter
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r Correlation vector between the new point
and the points used to construct the model

R Correlation matrix between the n sample
points

L n-vector of ones

fom Figure of ment

i Cumulative normal distribution function

[r/ Density normal distribution function

¥ Residual function

' DACE residual predictor

. Current best function value

s7(x*)  Mean square error of the predictor
COP  Cumulative oil production (m”)
sl Cumulative steam injected (m’)
cov Covariance

BIS Best imtial solution

LHC  Latin hypercube

Subscript
h Coordinate directions

Superscript
= New point
Transpose
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