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Abstract 
This paper presents a methodology for the optimal hydraulic 
fracture treatment design. The methodology includes, the 
construction of a “fast surrogate” of an objective function 
whose evaluation involves the execution of a time-consuming 
computational model, based on neural networks, DACE 
modeling, and adaptive sampling. Using adaptive sampling, 
promising areas are searched considering the information 
provided by the surrogate model and the expected value of  
the errors.  
 The proposed methodology provides a global optimization 
method, hence avoiding the potential problem of convergence 
to a local minimum in the objective function exhibited by the 
commonly Gauss-Newton methods. Furthermore, it exhibits 
an affordable computational cost, is amenable to parallel 
processing, and is expected to outperform other general 
purpose global optimization methods such as, simulated 
annealing, and genetic algorithms.  

The methodology is evaluated using two case studies 
corresponding to formations differing in rock and fluid 
properties, and geometry parameters. From the results, it is 
concluded that the methodology can be used effectively and 
efficiently for the optimal design of hydraulic  
fracture treatments. 
 
Introduction 
Hydraulic fracturing is one of the most common stimulation 
strategies used to enhance the production from oil and gas 
wells. During a hydraulic fracturing treatment, fluids are 
injected to the formation at a pressure high enough to cause 
tensile failure of the rock, and propagate the fracture. As a 
result of a successful treatment, a path with much higher 

permeability than the surrounding formation is created from 
the well. Each of the fluids injected during the treatment 
execution performs a significant and specific task. The initial 
fluid, known as pad, initiates and propagates the fracture. The 
following stages of the treatment involve the injection of a 
fracturing fluid with varying concentrations of proppant. The 
fluid is intended to continue the fracture propagation and the 
proppant will keep the fracture open, even though the 
formation stresses will try to close the fracture, after the fluid 
injection ceases. 

For a given formation, the design of a hydraulic fracture 
treatment involves the selection of appropriate fracturing 
fluids and proppants, the number of treatment stages, the 
concentrations and the rates and pressures of injection of each 
stage. Each design will result in a specific fracture geometry 
and conductivity, which is related to the production increase 
obtained from the fractured well. This means that, due to the 
several possible combinations of the parameters involved, and 
their non-linear interactions, there are a significant number of 
possible fracture geometries, each of which will result in a 
different post-fracture well production performance. 

Ralph and Veatch1 presents the general concepts of 
hydraulic fracture treatments economics and introduced the 
net present value as a valuable tool for the optimal design of 
hydraulic fracture treatment. An optimal hydraulic fracture 
treatment design maximizes the net present value of the 
revenue after the treatment, considering the post-fracture 
production performance and the treatment costs. 

Table 1 presents a summary of previous work in the area of 
hydraulic fracture optimization. Poulsen and Soliman2 used 
fluid volume and proppant concentration as treatment design 
variables, with a two dimensional fracture propagation model, 
accounting for proppant transport and sedimentation. No 
formal optimization procedure was used (trial and error), 
minimizing the difference between calculated and desired 
fracture length and conductivity. Balen et al.3 used as design 
variables, fracturing fluid, injected fluid volume and proppant 
concentration, pumping rate and proppant types. Their work 
used a two-dimensional fracture propagation model for 
predicting fracture geometry, and an economic model. The 
optimization procedure was based on a sensitivity analysis of 
the design variables respect to net present value. Hareland et 
al.4 used  fluid injection rate and fracturing fluid as design 
variables and a pseudo-three dimensional fracture propagation 
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model coupled with a post-fracture production and economic 
models. The optimization procedure was similar to that used 
by Balen et al.3. Rueda et al.5 considered as treatment design 
variables, the injected fluid volume, fracturing fluid type, 
proppant type and pumping rate. Their work used a two-
dimensional fracture propagation model, accounting for 
fracture closure behavior, and a post-fracture production 
model coupled with an economic model. The optimization was 
posed as a mixed integer linear programming (MILP) problem 
and solved accordingly. Mohaghegh et al.6 used as design 
variables, fluid volume injected, proppant concentration and 
fluid injection rate. Their work used a surrogate model of a 
three-dimensional fracturing simulator accounting for fracture 
propagation and closure behavior, and proppant transport and 
sedimentation. The optimization procedure was a  
Genetic Algorithm.  
 The analysis of previous work shows limitations such as, 
the absence of a global optimization procedure,2,3,4,5 direct 
coupling of the hydraulic fracture models and optimization 
procedure,2,3,4 no error estimation (all the previous work), 
limited number of design variables,2,4 not account for fracture 
closure and proppant transport and sedimentation,2,3,4 and not 
include an economic model.2,6 
 This paper presents a methodology called NEGO (neural 
network based efficient global optimization) developed by 
Queipo et al.7 for the optimal design of hydraulic fracture 
stimulation treatments. This methodology includes the 
construction of a “fast surrogate” of an objective function, 
whose evaluation involves the execution of a time-consuming 
computational model (hydraulic fracture simulator), based on 
neural networks, DACE8 modeling, and adaptive sampling. 
Using adaptive sampling, promising areas are searched 
considering the information provided by the surrogate model 
and the expected value of the errors.  
 The DACE surrogate model is initially constructed using 
sample data generated from the execution of the 
computational model with parameters given by a latin 
hypercube experimental design, and a neural network, and 
provides error estimates at any point. Additional points are 
obtained balancing the exploitation of the information 
provided by the surrogate model (where the surface is 
minimized) with the need to improve the surface (where error 
estimates are high). The proposed methodology provides a 
global optimization method, hence avoiding the potential 
problem of, convergence to a local minimum in the objective 
function exhibited by the commonly used Gauss-Newton 
methods, and computational cost involved, in numerically 
estimating derivatives and in the step by step movement along 
given trajectories. Furthermore, it exhibits an affordable 
computational cost, is amenable to parallel processing, and is 
expected to outperform other general purpose global 
optimization methods such as, simulated annealing, and 
genetic algorithms. 
 
 

Problem Definition 
The problem of interest is an optimization problem, with 
typically a high number of design parameters and 
computationally expensive objective function evaluations.  
Formally, it can be stated as: 

 
pRXxfind ⊆∈  

such that      
f(x) is minimized 

 
where f is an objective function of x,  the design variables of a 
fracture treatment, and X is a set of constraints. The design 
vector x, is given by: 
 
- Volume of the stages (V1, V2,...., Vn) 
- Proppant concentration increment for the last n stages 

(∆Cp21, ∆Cp32, ...., ∆Cpjh   where   j= 2, ......, n; h= 1,..,n-1) 
- Fracturing fluid injection rate (Qi) 
- Fluid performance index (np) 
- Consistency index Kf 
and the set of constraints is: 

xi min < xi < xi max from i = 1,2 ...m 
Where: 

xi max: upper bound  
xi min: lower bound 
 

Hence, the problem is to find, for a given formation, the 
fracture treatment design that will maximize the net present 
value of the post-fracture revenue, considering the well post 
fracture production performance and the treatment costs. The 
formation is characterized by the following parameters: 
 
- Poisson ratio (υ) 
- Young´s modulus (E) 
- Stress in the pay-zone (σp)  
- Pay-zone height (Hp) 
- Reservoir permeability (kr) 
- Reservoir outer boundary radius (re) 
- Wellbore radius (rw) 
- Spurt-loss  coefficient (Sp) 
- Leak-off coefficient (C). 
- Oil volumetric factor (Bo). 
- Flowing bottomhole pressure (Pwf) 
- Reservoir initial pressure (Pi) 
- Oil viscosity (µo) 

 
The objective function is given by: 
 

)x(NPV)x(f −= ............................................................(1) 
 

where, NPV is the net present value of the post-fracture 
revenue. 

To calculate the NPV associated with a specific fracture 
treatment, it is typically necessary to execute a time 
consuming computational model that includes a hydraulic 
fracture simulator, a post fracturing production model, and an 
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economical model. This issue place restrictions on the solution 
approach, given that the number of objective function 
evaluations are limited to a relatively low value considering 
the time restrictions typically present in the oil industry. 
 
Solution Methodology 

The optimization strategy includes the construction of a 
“fast surrogate” of an objective function, whose evaluation 
involves the execution of a computational model, which 
estimates the net present value of the revenue for a specific 
fracture treatment. The computational model integrates a 
hydraulic fracture simulator, a production model and an 
economic model.  

The hydraulic fracture simulator computes, for a given 
formation, the fracture geometry and conductivity resulting 
from a specific treatment. In this study, the simulator is based 
on the GDK9 2D fracture propagation model, and includes 
models for proppant transport and sedimentation10,11, and for 
the closure behavior of the fracture.12,13 The production 
model14 estimates the post-treatment well production, 
according to the increment of the productivity index. The 
economic model1 calculates the net present value of the 
revenue, considering a production time horizon and  
treatment costs. 

 
Hydraulic Fracture Simulator. The inputs to the simulator 
are the formation parameters and the treatment design 
variables. The simulator computes the fracture geometry and 
the proppant transport and sedimentation, during propagation 
and closure of the fracture. This information is used to 
calculate the ratio of post-fracture and pre-fracture 
productivity indexes. For a successful treatment this ratio is 
greater than one. 
 This work uses the GDK 2D propagation model, which 
assumes constant fracture height during propagation. The 
simulator solves a coupled system of partial differential 
equations, which model the different physical phenomena 
involved in the hydraulic fracturing process. 
 

Model Equations 
Fracture Geometry.Geertsma and de Klerk9 presents the 

equations that model the fracture geometry. According to the 
mass conservation principle, the mass injected to the fracture 
must equal the sum of the mass accumulated in it and the mass 
that is lost due to formation porosity, known as leak-off. 
Considering an incompressible the fracturing fluid and the 
leak-off and spurt loses, the relationship between the fluid 
flow Q and the cross section A of the fracture is expressed by: 
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Assuming a linear propagation of the fracture, the width W of 
the fracture is given by: 
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This means that at any time, the width is constant in a vertical 
section of the fracture. 

If one-dimensional and stable flow is assumed, the 
relationship between the flow rate through a vertical section 
and the pressure gradient along the fracture propagation 
direction, is specified as: 
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where η is given by 
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The fracture geometry during propagation is obtained 

solving Eqs. (2), (4) and (5) subject to the following: 
 
Initial condition: 0)0,( =xW  

Boundary conditions: 20 iQ)t,(Q = ............................(7)  

0=)t,L(W  
Proppant Transport and Sedimentation. The proppant are 
spherical solid particles that prevent the fracture closure after 
the injection ceases. Without a loss of generality, it will be 
considered treatments of one stage of pad injection and a 
maximum of four stages of mixed fluid and proppant 
injection. The proppant concentration of the injection fluid at 
each stage, denoted by Cpi i=1,…,5 is constant, with Cp1 =0 
(fluid without proppant) and Cp2 ≤ Cp3 ≤ Cp4 ≤ Cp5. However, 
the proppant concentration along the fracture increases 
because of leak-off and fracture volume reduction. It is 
necessary to calculate the proppant concentration along the 
fracture at any time.  

Domselaar et al.10 suggest the following equation, 
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which can be solved numerically to obtain the normalized 
proppant concentration pC  profile along the fracture, at any 

time. Suppose that at time t, the pad stage and two stages of 
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proppant mixtures have been injected into the fracture. It is 
assumed that different stages do not mix. This situation is 
illustrated in Fig. 1, in which each number identifies one 
injection stage. The normalized proppant concentration at time 
t of any point x in a proppant mixture injection stage, denoted 
byCp(x,t), is defined as the ratio of the concentration Cp(x,t) 
at that point, to the concentration at with the stage was 

injected. For point 1x  in Fig. 1: 
 

( ) ( )
2

1
1 Cp

t,xCp
t,xpC = .........................................................(9) 

 
A mass balance is used to locate the contact between two 

consecutive stages, known as proppant fronts. The proppant 
concentration Cp(x,t), computed with the normalized proppant 
concentrationCp(x,t) and the proppant front locations, are 
used to calculate the descend velocity of the proppant particles 
suspended in the fluid, according to Eq. 10: 
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where aµ , known as apparent fluid viscosity, is given by, 
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 Some of the descending proppant particles will group on 
the bottom of the fracture, forming what is known as proppant 
bed, and some will become trapped between the fracture 
lateral walls after closure. Smaller closure times and/or lower 
descend velocities increase the number of particles trapped by 
the fracture walls, which is a desirable feature because the 
resulting fractured producing zone will be greater. Daneshy11 
developed a numerical solution procedure to calculate the 
volume of the proppant bed and the volume of suspended 
proppant, from the descend velocity of proppant particles. 
These results and the fracture closure time were used in this 
work to determine the volume of proppant trapped between 
fracture walls.  
 
Post-fracture Production Model. This model calculates the 
productivity index ratio and cumulative oil production.  
 
Productivity Indexes Ratio Calculation. The post-fracture 
productivity index depends on the geometry after the fracture 
has closed. This geometry is obtained by solving Eq. 1 during 
closure time, with Q(x,t) = 0 and assuming that the fracture 
width and height decrease at the same rate. The cross section 
of the fracture at any x has a rectangular shape. 

The post-fracture and pre-fracture productivity  indexes 
ratio, is calculated applying the equation developed by 

Raymond and Binder14 to the propped fracture divided in N 
intervals of the same length along its propagation direction: 
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where L(i), Weff(i), Heff(i) and Kp(i) are the length, width height 
and proppant permeability evaluated in the ith element. 
 
Cumulative oil production calculation. The production rate 
just before the treatment is calculated using Darcy’s Law for 
semi-stable flow: 
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The initial production rate after the fracture treatment, denoted 

by ofQ , is given by 
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To estimate the post-treatment production rate performance, it 
is assumed a hyperbolic decline curve: 
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where ai is the initial declination rate and m is a constant such 
that  0<m<1. 

Defining tof as the initial after the treatment and a time 
horizon of T years, the cumulative oil production in BBL 
during that time horizon, denoted by COP, is given by 
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Economic Model. Calculates the net present value of the 
revenue (NPVrev) produced by the fracture treatment, which is 
given by: 
 

tcosincrev NPVNPVNPV −= ...............................................(17)  
 
where NPVinc is the net present value of the income, 
considering the cumulative oil production and the oil barrel 
price, and NPVcpst is the net present value of the total costs, 
which include treatment costs, operational costs and 
production duties.  
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Optimization Strategy. The proposed solution approach 
called NEGO, neural-network based efficient global 
optimization, is an improved version of the EGO algorithm15 
for the optimization of computationally expensive black-box 
functions.  
   The proposed solution methodology involves the following 
five steps: 
1. Construct a sample of the parameter space using the latin 

hypercube method.  The latin hypercube sampling 
procedure has been shown to be very effective for 
selecting input variables for the analysis of the output of a 
computer code.7  

2. Conduct computer model executions using the sample 
from the previous step and record the objective  
function values. 

3. Construct a parsimonious neural network using the data 
from the previous step. The purpose of this neural 
network is to capture the general trends observed in the 
data; no rigorous performance criteria is placed on the 
neural network. The input variables of the neural network 
are the fracture treatment design parameters and the 
output variable is the corresponding objective  
function value.   

4. Construct a DACE model for the residuals, that is, the 
difference between the observed objective function 
values, and the neural network responses using the 
sample data. These models provide not only estimates of 
the residuals values but also of the respective errors. The 
surrogate model for the evaluation of the objective 
function is the sum of the neural network and DACE 
models. Details of this step will be given later in  
this section. 

5. Additional points are obtained balancing the exploitation 
of the information provided by the surrogate model 
(where the surface is minimized) with the need to 
improve the surface (where error estimates are high), 
until a stopping criteria has been met.  This balance is 
achieved by sampling where a figure of merit is 
maximized. Details of the figure of merit will be given 
later in this section. 

 
DACE models. These models owe their name, design and 
analysis of computer experiments, to the title of an article that 
popularized the approach.8 These models suggest to estimate 
deterministic functions as shown in Eq. 18: 
 

)x()x(y jj εµ += ..............................................................(18) 

 
where, y is the function to be modeled, µ is the mean of the 
population, and ε is the error with zero expected value, and 
with a correlation structure given by: 
 

( ) 







−−= ∑

=

p

h

h
j

h
ihji xxexp))x(),x(cov(

1

22 θσεε ..................(19)  

 

where, p the dimension of vector x, σ identifies the standard 
deviation of the population, and,  θh is a correlation parameter, 
which is a measure of the degree of correlation among the data 
along the h direction. 

Specifically, given a set of n input/output pairs (x, f), the 
parameters, µ, σ, and θ are estimated such that the likelihood 
function is maximized.8 Having estimated these values, the 
function estimate for new points is given by 
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where, the line above the letters denote estimates, r´ identifies 
the correlation vector between the new point and the points 
used to construct the model, R is the correlation matrix among 
the n sample points, and L denotes an n-vector of ones.  

The mean square error of the estimate is given by: 
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The model is validated through a cross validation 

procedure, that essentially makes sure that the estimates using 
all but the point being tested and the actual response values are 
within an specified number of standard deviations. The 
original EGO algorithm may not cross-validate properly if 
there are trends in the data, in contrast to NEGO which is 
expected to subtract any significant trends in the data. 

The benefits of modeling deterministic functions using this 
probabilistic approach are: i) represents a best linear unbiased 
estimator, ii) interpolates the data, and iii) provides error 
estimates. 
 
Figure of merit. With reference to Fig 2, there are two zones 
where it is desirable to add additional points. The zone (left) 
where the objective function is minimized and the zone (right) 
where there is a significant error in the prediction. Hence the 
figure of merit for adding sample points should be high in 
either of these situations. Specifically, the figure of merit 
(Mohaghegh et al., 1999) used in this work, is given by: 
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where Φ and φ are the cumulative and density normal 

distribution functions, respectively;  fmin and f
)

are the 
minimum current and objective function estimate value, 
respectively. Eq. 22 establishes the desired balance of 
sampling where the response surface (the predictor) is 
minimized (left term) and in zones where error estimates are 
high (right term).  Note that the figure of merit makes 
reference to the objective function so it includes the sum of the 
output of both the neural network and the residual models.  
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This surface response approach for global optimization is 
expected to outperform competing methods, in terms of 
necessary computationally expensive objective function 
evaluations, to meet a stopping criterion. It can identify 
promising areas without the need of moving step by step along 
a given trajectory. In addition, by providing estimates of the 
errors at unsampled points, it is possible to establish a 
reasonable stopping criterion. Furthermore, provides a fast 
surrogate model that could be used to visualize the 
relationship between the sought parameters and the objective 
function values and to identify the relative significance of each 
of the parameters.   
 
Implementation. The following case studies were solved 
using an implementation of the NEGO algorithm in Matlab 
Ver. 5.3. The subproblems of finding near optimal values for 
maximizing likelihood and the figure of merit were solved 
using the DIRECT method.16 Note that the solution of these 
subproblems do not require additional computationally 
expensive objective function evaluations. The computer model 
was developed by the authors, also in Matlab.17 
 
Case Study   

The proposed methodology was evaluated using two case 
studies, corresponding to formations differing in rock and 
fluid properties, and geometric parameters.  The formation 
parameters for Case Studies 1 and 2 are shown in Tables 2 
and 4, respectively. The fracture height for Case Study 1 
(Case Study 2) was assumed to be 80 ft (180 ft) with a pay 
zone height of 80 ft (120 ft). 

As stated before, the problem is to find, for each 
formation, the fracture treatment design that will maximize the 
net present value of the post-fracture revenue. Specifically, the 
design vector, x, is given by the fracture treatment parameters:  

 
- Volume of the stages (V1, V2, V3, V4, V5). 
- Proppant concentration increment for the last four stages 

(∆Cp21, ∆Cp32, ∆Cp43, ∆Cp54). 
- Fracturing fluid injection rate (Qi). 
- Fluid performance index (np). 
- Consistency index Kf. 
 
and the set of constraints is given by: 

100 bbl ≤ Vk ≤ 500 bbl   51,...,k =  
0 lbm/gal ≤ ∆Cpjh ≤ 4 lbm/gal  j = 2,…,5, h = 1,…,4 
10 bpm ≤ Qi ≤ 50 bpm 
0.3 ≤ np ≤ 1 
0.0021 lbf.secnp/ft2 ≤ Kf ≤ lbf.secnp/ft2 

 
The following assumptions hold: (i) any fracture treatment 

is constituted by a first stage of pad injection and a maximum 
of four stages of mixed fluid and proppant injection and (ii) 
fluid and proppant densities, and proppant types, diameters 
and permeabilities are known. Tables 3 and 5 show the 
corresponding values for case studies 1 and 2, respectively. 

 

Results and discussion  
Case Study 1. Using a latin hypercube experimental design, 
an initial sample of 175 points in the 12-dimensional input 
space was generated to construct the neural network (NN) and 
the DACE models. An additional sample of 50 points was 
generated to validate the NN model. The computational model 
was executed on all points, to calculate, for each treatment, the 
objective function values. The minimum value obtained within 
the initial sample was –1.882x106 $. 

A NN with architecture 12x1x1 was constructed and 
training and validation mean errors of 2.758x105 and 
3.052x105, respectively, were obtained after only one training 
iteration. After the DACE model was estimated and validated, 
the NEGO algorithm added 80 points. Fig. 3 shows the plot of 
objective function values. The points represent the values 
corresponding to the initial sample while the circles 
correspond to points added by the NEGO algorithm. The 
dotted line indicates the objective function value for the best 
solution found within the initial sample. Among the points 
added by the NEGO algorithm,  five (5) are better than the 
best solution found within the initial sample. Table 6 includes 
relevant information about these five points: number of 
iteration, input vector and objective function value. The best 
solution found corresponded to the 79th additional sampled 
point, and had an objective function value of –2x106 $, which 
is 9.41% lower than the minimum value found in the initial 
sample. This point represents an increment of 1229 % of the 
revenue, when compared to the net present value of 1.79x105 
$, without executing the fracture treatment. Note that the best 
solution was obtained after 254 computationally expensive 
objective function evaluations. 

For the overall best solution found, Fig. 4 shows the 
fracture width propagation during fluid injection. Each curve 
corresponds to a time step. Fig. 5(a) shows the width after 
fracture closure and, as a reference, the width after the fluid 
injection finishes (dotted line). Fig. 5(b) shows the height after 
fracture closure, which coincides with the trapped proppant 
height. The vertical lines represent proppant fronts. It should 
be noted that the proppant fronts locations correspond to width 
discontinuities, due to changes in proppant concentrations 
between different stages. 
 
Case Study 2. An initial sample of 125 was generated using a 
latin hypercube experimental design, to construct the NN and 
the DACE models. An additional sample of 50 points was 
used to validate the NN model. The minimum value within the 
initial sample points was of –4.944x105. 

A NN with architecture 12x1x1 was constructed and 
training and validation mean errors of 8.5968x104 and 
1.0002x105, respectively, were obtained after one training 
iteration. After the DACE model was estimated and validated, 
the NEGO algorithm added 50 points. Fig. 6 shows the plot of 
objective function values. The points represent the values 
corresponding to the initial sample while the circles 
corresponds to points added by the NEGO algorithm. The 
dotted line indicates the objective function value for the best 
solution within the initial sample. Among the points added by 
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the NEGO algorithm, one (1) is better than the best solution 
found within the initial sample. Table 7 includes the 
information about this point. This minimum objective function 
value, found in 21th iteration, had a value of –4.991x105 $, 
which is 9.91% lower than the best solution found within the 
initial sample. The best solution found represents an increment 
of 1800 % of the revenue, when compared to the net present 
value (2.771x104 $) obtained without executing any fracture 
treatment. The best solution found was obtained after 146 
evaluations of the objective function. 

For the best overall solution found, Fig. 7 shows the 
fracture width propagation during fluid injection which each 
curve corresponding to a time step. Fig. 8(a) shows the width 
after fracture closure and the width after the fluid injection 
finishes (dotted line) and Fig. 8(b) shows the height after 
fracture closure (trapped proppant height). The vertical lines 
represent proppant fronts and the horizontal lines delimit the 
pay zone. 
  
Conclusion 
♦ A methodology for the optimal design of hydraulic 

fracture treatments has been proposed. The method 
includes the construction of a “fast surrogate” of an 
objective function, whose evaluation involves the 
execution of a time-consuming computational model, 
based on neural networks, DACE modeling, and adaptive 
sampling. Using adaptive sampling, promising areas are 
searched considering the information provided by the 
surrogate model and the expected value of the errors.  

 
♦ The optimization approach holds promise to be useful in 

the optimization of objective functions involving the 
execution of computationally expensive mathematical 
models and is expected to outperform competing 
methods, in terms of computationally expensive objective 
function evaluations, necessary to meet an stopping 
criteria. This is because it can identify promising areas 
without the need of moving step by step along a given 
trajectory. Additionally, by providing estimates of the 
errors at unsampled points, it is possible to establish a 
reasonable stopping criterion. Furthermore, provides a 
fast surrogate model that could be used to visualize the 
relationship between the sought parameters and the 
objective function values and to identify the relative 
significance of each of the parameters.   

 
♦ The methodology was tested on two case studies 

corresponding to formations differing in rock and fluid 
properties, and geometry parameters (12 parameters). The 
improvement revenue for the fracturing treatment 
solutions were 1229 % and 1800% for the first and second 
case, using 305 and 225 objective function evaluations. 
The results suggest that the methodology can be used 
effectively and efficiently for the optimal design of 
hydraulic fracture treatments. 

 

Nomenclature 
 
DACE  = Design and analysis of computer experiments 
x = Design vector 
X = Set of constraints 
F = Objective function 
NPV = Net present value 
Qo = Fluid flow rate 
QL = Fluid loses rate 
A = Fracture vertical section area 
C = Leak-off coefficient 
Hp = Height of the pay-zone 
τ(x) = Time for which the fracture opened at x 
Sp = Spurt-loss coefficient 
Lo  = Fracture length 
W  = Fracture width 
P = Pressure 
υ  = Poisson ratio  
E  = Young modulus 
H  = Fracture height 
Np  = Fluid behavior index  
η  = Parameter related to the fluid viscosity 
Kf  = Fluid consistency index 
Qi  = Initial flow rate 
Cp  = Proppant concentration 

pC   = Normalized proppant concentration 

Vs  = Proppant particles descent velocity 
d  = Proppant diameter 
ρp  = Proppant density 
ρf0  = Fluid density 
µa  = Apparent fluid viscosity 
Weff  = Width of the propped fracture after closure 
Heff  = Height of the propped fracture after closure 
Kp  = Proppant permeability 
Qo  = Oil production rate 
Kr  = Reservoir permeability 
Bo  = Oil volumetric factor 
µo  = Oil viscosity 
re  = Reservoir outer boundary radius 
rw  = Well radius 
Pwf  = Flowing bottomhole pressure  
Pi  = Reservoir initial pressure 
P  = Average value of Pwf and Pi 
Qof   = Initial oil production rate after fracture 
J   = Productivity index after fracture 
Jo  = Productivity index before fracture 
ai  = Initial declination rate 
T  = Time horizon in years 
COP  = Cumulative oil production 
NPVrev  = Net present value of the revenue 
NPVinc  = Net present value of the income 
NPVcost  = Net present value of the costs 
 y  = DACE response value 
µ  = Mean of the population 
ε  = Error in the DACE model 
p  = vector x dimension 
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σ  = Standard deviation of the population 
θh  = Correlation parameter 
 r’ = Correlation vector between the new point and the  

points used to construct the model 
R  = Correlation matrix between the n sample points 
L  = n-vector of ones 
fom  = Figure of merit 

Ö  = Cumulative normal distribution function 
 φ  = Density normal distribution function 

f
)

  = DACE predictor  

fmin  = Current best function value 

 s2(x)  = Mean square error of the predictor 
Vi  = Volume of the i-th injection stage 
∆Cpjh  = Proppant concentration change between i-th and   

 j-th stages 
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TABLE 1 – SUMMARY OF PREVIOUS WORK IN THE AREA OF HYDRAULIC FRACTURE 
OPTIMIZATION 

Authors Design variables Objective 
function 

Models Optimization 
procedure 

Surrogate 
models 

Error 
estimation 

 
Poulsen and Soliman, 

(1986) 

 
- Injected fluid volume 
- Proppant concentration 

 
Minimization of the 
difference between 

desired and 
calculated fracture 

length and 
conductivity 

 
- Two-dimensional 
fracture propagation 
- Proppant transport 
and sedimentation 

 

 
Heuristic 

 
No 

 
No 

 

Balen et al., (1988)  

 

 
- Injected fluid volume 
- Proppant concentration 
- Fluid injection rate 
- Proppant types 
- Fracturing fluid 
 

 
Maximization of the 
net present value 

 

 
- Two-dimensional 
fracture propagation 
- Economic model 

 
Search assisted 
using sensitivi- 

ty analysis 

 
No 

 
No 

 
Hareland et al., (1993) 

 
- Fluid injection rate 
- Fracturing fluid 

 
Maximization of the 
net present value 

 

 
- Pseudo three 
dimensional fracture 
propagation 
- Post-fracture 
production  
- Economic model 

 
Search assisted 
using sensitivi- 

ty analysis 

No No 

 
Rueda et al., (1994) 

 
- Injected fluid volume  
- Fracturing fluid 
- Proppant types 
- Fluid injection rate 

 
First case: 
Maximization of the 
net present value 
 
Second case: 
Minimization the 
fracture treatment 
costs 

 
- Two-dimensional 
fracture propagation  
- Fracture closure   
- Post-fracture 
production  
- Economic model 

 
Mixed Integer 
Linear 
programming  
Technique 
(MILP) 

 
 
No 

 
 
No 

 

Mohaghegh et al.,  

(1999) 

 

 
- Injected fluid volume 
- Proppant concentration 
- Fluid injection rate 
 
 

 
Minimization of the 
difference between 
desired and 
calculated fracture 
length and 
conductivity 

 
Surrogate model of a 
three-dimensional 
fracturing simulator 
taking account: 
- Fracture propagation 
- Fracture closure 
- Proppant transport 
and sedimentation 
 

 
Genetic 
algorithms 

 
Yes 
 

     
No 

 

Queipo et al. 

(Present work) 

 
- Injected fluid volume 
- Proppant concentration 
- Fluid injection rate 
- Fracturing fluid 
 

 
Maximization of the 
net present value 

 
- Two-dimensional 
fracture propagation  
- Fracture closure 
- Proppant transport 
and sedimentation 
- Post-fracture 
production  
- Economic model 

 
Neural Network 
based Efficient 
Global 
Optimization 
(NEGO) 

 
 
Yes 
 

 
 
Yes 
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TABLE 2 – RESERVOIR PROPERTIES  
(CASE STUDY 1) 

Variable Unit Value 
υ (-) 0.35 
E (psi) 5.106 

σp (psi) 4000 
Hp (ft) 80 
kr (md) 1 
re (ft) 2000 
rw (in) 4 
Sp (gal/ft2) 0.02 
C (ft/min)1/2 0.002 
Bo (bbl/bbl) 1.1 
Pw (psi) 800 
Pi (psi) 4000 
µο (cp) 2 

 
 

 
 

TABLE 3 - FRACTURING FLUID DENSITY, AND 
PROPPANT TYPES, DIAMETERS, DENSITIES 

AND PERMEABILITIES (CASE STUDY 1) 
Fracturing Fluid 

Density 1000 Kg/m3 

Proppant for stages 2 and 3 
Type 20-40 Mesh Bauxite 

Diameter 0.025 in 
Density 160 lb/ft3 

Permeability 450 d at 4000 psi 
Proppant for stages 4 and 5 

Type 12-20 Mesh Bauxite 
Diameter 0.055 in 
Density 160 lb/ft3 

Permeability 2200 d at 4000 psi 
 
 

 
 

TABLE 4- BEST FIVE VALUES OF THE OBJECTIVE FUNCTION FOUND BY THE NEGO ALGORITHM 
(CASE STUDY 1) 

# 
Iter 

V1 

(bbl) 
V2 

(bbl) 
V3 

(bbl) 
V4 

(bbl) 
V5 

(bbl) 
∆Cp21 

(lbm/gal) 
∆Cp32 

(lbm/gal) 
∆Cp43 

(lbm/gal) 
 

∆Cp54 
(lbm/gal) 

Qi 
(bpm) 

np 

(-) 
Kf 

(lbf.secn

p/ft2) 

y.106 

($) 

1 433.33 166.66 300.00 433.33 433.33 2.00 2.00 2.00 2.00 43.33 0.650 0.0116 -1.903 

11 433.33 166.66 300.00 166.66 433.33 2.00 2.00 2.00 2.00 43.33 0.650 0.0116 -1.887 

48 433.33 300.00 166.66 433.33 433.33 2.00 2.00 2.00 2.00 43.33 0.650 0.0116 -1.896 

66 433.33 166.66 166.66 433.33 300.00 2.00 2.00 2.00 2.00 43.33 0.650 0.0116 -1.911 

79 433.33 300.00 300.00 433.33 300.00 3.33 2.00 3.33 2.00 43.33 0.650 0.0116 -2.000 
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TABLE 5 - RESERVOIR PROPERTIES  
(CASE STUDY 2) 

Variable Unit Value 
υ (-) 0.35 
E (psi) 5.105 

σp (psi) 6000 
Hp (ft) 120 
kr (md) 0.1 
re (ft) 1500 
rw (in) 4 
Sp (gal/ft2) 0.04 
C (ft/min)1/2 0.003 
Bo (bbl/bbl) 1.2 
Pw (psi) 1000 
Pi (psi) 6000 
µο (cp) 1 

 
 
 
 

TABLE 6 - FRACTURING FLUID DENSITY, AND 
PROPPANT TYPES, DIAMETERS, DENSITIES 

AND PERMEABILITIES (CASE STUDY 2) 
Fracturing Fluid 

Density 1000 Kg/m3 

Proppant for stages 2 and 3 
Type 20-40 Mesh Bauxite 

Diameter 0.025 in 
Density 160 lb/ft3 

Permeability 400 d at 4000 psi 
Proppant for stages 4 and 5 

Type 12-20 Mesh Bauxite 
Diameter 0.055 in 
Density 160 lb/ft3 

Permeability 1400 d at 4000 psi 
 

 
 
 

TABLE 7- BEST VALUE OF THE OBJECTIVE FUNCTION FOUND BY THE NEGO ALGORITHM  
(CASE STUDY 2) 

# 
Iter 

V1 

(bbl) 
V2 

(bbl) 
V3 

(bbl) 
V4 

(bbl) 
V5 

(bbl) 
∆Cp21 

(lbm/gal) 
∆Cp32 

(lbm/gal) 
∆Cp43 

(lbm/gal) 
 

∆Cp54 
(lbm/gal) 

Qi 
(bpm) 

np 

(-) 
Kf 

(lbf.secn

p/ft2) 

y.106 

($) 

21 433.33 433.33 166.66 300.00 166.66 0.6667 2.00 2.00 2.00 43.33 0.650 0.0053 -4.991 
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Fig. 1  Illustration for proppant concentration calculation 

 
 

 
Fig. 2  Illustration of the purpose of the figure of merit 
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Fig. 3  Values of the objective function for Case Study 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4  Fracture width propagation during fluid injection for Case Study 1 
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Fig. 5  Fracture width and height after closure for Case Study 1 

 
 

Fig. 6  Values of the objective function for Case Study 2 
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Fig. 7  Fracture width propagation during fluid injection for Case Study 2 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 - Illustration of the purpose of the figure of merit. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Fracture width and height after closure for Case Study 2 
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