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Abstract 
After conventional waterflood processes the residual oil in the 
reservoir remains as a discontinuous phase in the form of oil 
drops trapped by capillary forces and is likely to be around 
70% of the original oil in place (OOIP). The EOR method so-
called alkaline-surfactant-polymer (ASP) flooding has been 
proved to be effective in reducing the oil residual saturation in 
laboratory experiments and field projects through reduction of  
interfacial tension and mobility ratio between oil and water 
phases.  

A critical step to make ASP floodings more effective is to 
find the optimal values of design variables that will maximize 
a given performance measure (e.g. net present value, 
cumulative oil recovery) considering a heterogeneous and 
multiphase petroleum reservoir. Previously reported works 
using reservoir numerical simulation have been limited to  
sensitivity analyses at core and field scale levels because the 
formal optimization problem includes computationally expen-
sive objective function evaluations (field scale numerical 
simulation).  

The proposed methodology estimates the optimal values 
for a set of design variables (slug size and concentration of the 
chemical agents) to maximize the cumulative oil recovery 
from a heterogeneous and multiphase petroleum reservoir 
subject to an ASP flooding. The surrogate-based optimization 
approach has been shown to be useful in the optimization of 
computationally expensive simulation-based models in the 
aerospace, automotive, and oil industries. In this work we 
have extended this idea along two directions: i) using multiple 
surrogates for optimization, and ii) incorporating an adaptive 
weighted average model of the individual surrogates.   

The proposed approach involves the coupled execution of 
a global optimization algorithm and fast surrogates (ì.e. based 
on Polynomial Regression, Kriging, and a Weighted Average 

Model) constructed from field scale numerical simulation 
data. The global optimization program implement the 
DIRECT algorithm and the reservoir numerical simulations 
are conducted using the UTCHEM program from the 
University of Texas at Austin. 

The effectiveness and efficiency of the proposed 
methodology is demonstrated using a well-known field scale 
case study.  

 
Introduction 
After conventional waterflood processes the residual oil in the 
reservoir remains as a discontinuous phase in the form of oil 
drops trapped by capillary forces and is likely to be around 
70% of the original oil in place (OOIP)1. The EOR method so-
called alkaline-surfactant-polymer (ASP) flooding has been 
proved to be effective in reducing the oil residual saturation in 
laboratory experiments and field projects through reduction of  
interfacial tension and mobility ratio between oil and water 
phases. Some ASP pilot tests reported in the literature have 
reached an oil recovery over 60% OOIP2-5. 

In ASP floodings the surfactant is responsible for reducing 
the interfacial tension between oil and water phases to a level 
that promotes the mobilization of trapped oil drops. The 
alkaline agent is intended to react with the acids to generate in 
situ surfactant to attain ultralow tension6 and to overcome the 
surfactant depletion in the liquid phases due to retention. The 
role of the polymer is to increase the viscosity, reducing the 
mobility ratio and hence reaching a greater volumetric swept 
efficiency. Details of the physical processes taking place can 
be found in Shah and Schechter7. 

The design of an ASP flooding process must achieve three 
main objectives: propagation of the chemicals in an active 
mode, the injection of enough chemicals accounting for the 
retention, and a complete swept of the area of interest8. 
Achieving these objectives is significantly affected by the 
selection of the chemicals, the concentration of the ASP 
solution and the slug size, among other factors.  

Previous works toward the optimization of ASP processes 
have concentrated mainly around identifying formulations that 
will achieve minimum interfacial tension using laboratory 
experiments and empirical correlations9-12, and sensitivity 
analyses using numerical simulation at core and field scale 
levels13-17. Table 1 presents a summary of these works and 
shows that formal optimization of ASP flooding has not been 
addressed. The latter is a critical step to find the optimal 
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parameters that will maximize a given performance measure 
(e.g. net present value, cumulative oil recovery) considering a 
heterogeneous and multiphase petroleum reservoir.   

The cited formal optimization has been limited due to the 
high computational cost exhibited by the numerical 
simulations at the reservoir level, which makes impractical the 
coupled execution of the simulator and optimization 
algorithms. The surrogate-based optimization approach has 
been shown to be useful in the optimization of 
computationally expensive simulation-based models in the 
aerospace18,19, automotive20,21, and oil industries22,23. 
Surrogate-based design makes reference to the idea of 
constructing an alternative fast model (surrogate) from 
numerical simulation data and using it for optimization 
purposes. In this work we have extended this idea along two 
directions: i) using multiple surrogates for optimization, and 
ii) incorporating an adaptive weighted average model of the 
individual surrogates.  

The proposed methodology estimates the optimal 
parameters (slug size and concentration of the chemical 
agents) to maximize the cumulative oil recovery from a 
heterogeneous and multiphase petroleum reservoir subject to 
an ASP flooding. The methodology involves the coupled 
execution of a global optimization algorithm and surrogates 
(based on Polynomial Regression, Kriging, and a Weighted 
Average Model) constructed from field scale numerical 
simulation data.   

The methodology is evaluated using a field scale case 
study based on an ASP flooding pilot available in the sample 
data archives of the UTCHEM24 program of the University of 
Texas at Austin.  

 
Problem of Interest 
The optimization of an ASP flooding process. More 
specifically: 

pRXxfind ⊆∈  
such that 

f(x) is maximized 
where f is the cumulative oil recovery (computationally 
expensive objective function), x represents p design variables, 
namely, slug size and the chemical concentrations, and X 
denotes simple bounds constraints (xi min < xi < xi max ; with i = 
1,2 ... p). Note that the computationally expensive nature of 
the objective function evaluations limits the possible solution 
approaches to those satisfying the time restrictions typically 
present in the oil industry.    

  
Solution methodology 
With reference to Fig. 1, the proposed methodology involves 
the following steps: 
1. Generate a sample of the design variables space using a 

modified latin hypercube experimental design. This 
sampling procedure has been shown to be very effective 
for selecting values of input variables for the analysis of 
the output of a computer code25. 

2. Conduct numerical simulations (via UTCHEM) using the 
sample (input) from the previous step and obtain the 
corresponding objective function values (output). 

3. Using the input/output pairs obtained in the previous steps, 
construct multiple surrogate models based on Polynomial 
Regression, Kriging and a Weighted Average Model. This 
surrogate models will be discussed later in this section.   

4. Solve the optimization problem of interest by coupling the 
execution of a global optimization algorithm (a modified 
Lipschitzian method called DIRECT26) with each of the 
surrogates constructed in step 3. 

5. Conduct numerical simulations using the optimal values 
obtained in the previous step to confirm their performance 
level. The designer now selects among the best confirmed 
design values the solution that satisfy the most his 
preference structure.     
 
Surrogate Modeling. It is an inverse problem where due 

to the limited amount of available data: i) alternative 
surrogates can provide reasonable approximations to function 
f, and ii) each surrogate may offer the best fit to f depending 
on the region of the design space. Since the location of the 
optimal design values is unknown we suggest to use multiple 
surrogates considering they can be constructed at no 
significant additional computational cost. Two alternative 
(approximating and interpolating schemes) surrogate models, 
namely, Polynomial Regression (PRG) and Kriging (KRG), 
will be considered. In addition, a Weighted Average Model 
(WAV) of these surrogates will also be included in the study. 
The WAV can be shown to reduce the variance estimation 
with respect to that of the individual surrogates27. Throughout 
this section, given the stochastic nature of the surrogates, the 
available data is considered a sample of a population.    
 

Polynomial Regression model. The regression analysis is 
a methodology that studies the quantitative association 
between a function of interest y, and m prediction variables zj, 
where there are n values of the function of interest yi, for a set 
of prediction variables zi

j 28. For each observation i a linear 
equation is formulated: 
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where the errors εi are independents with expected value equal 
to zero and variance σ2. The estimated parameters β̂ j (by least 
squares) are unbiased and have minimum variance. 

Eq.1 is expressed in matrix form as: 
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where Z is a n × m matrix with the prediction variable 
values. The vector of the estimated parameters is: 
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Considering a new set of design values z, the variance of 
the predicted response  is:  β̂Tz
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In this work the regression model considered is a second-
order polynomial model of the form: 
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Kriging model. These models suggest estimating 
deterministic functions as: 

)()( jj xxy ε+µ= .........................................................(6) 

where, y is the function to be modeled, µ is the mean of the 
population, and ε is the error with zero expected value, and 
with a correlation structure that is a function of a generalized 
distance between the sets of design values. In this work we use 
a correlation structure29 given by:  
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where, p denotes the number of dimensions in the set of 
design variables x; σ, identifies the standard deviation of the 
population, and, θh is a parameter which is a measure of the 
degree of correlation among the data along the h direction. 

Specifically, given a set of n input/output pairs (x, y), the 
parameters, µ, σ, and θ are estimated such that the likelihood 
function is maximized (Sacks et al.29). The model estimates 
for a new set of design values is given by:  

)()( 1 µµ LyRrxy T −+= − ...........................................(8) 

where the line above the letters denotes estimates, r identifies 
the correlation vector between the new set of design values 
and the points used to construct the model, R is the correlation 
matrix among the n sample points, and L denotes an n-vector 
of ones. 

The estimation variance is given by:   
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Weighted Average model. This model suggests to estimate 
deterministic functions as: 
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where yWAV is the weighted average model, ysurr i is the 
prediction, and αi the weight of the surrogate i, and k the 
number of surrogates. Note the adaptive nature of the model 
since the weights are a function of x.  

Assuming unbiased and independent predictions, the 
unbiased weighted average model has minimal variance when 
the weights are determined as follows.  
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where V(i) is the prediction variance of the i surrogates. In this 
case the individual surrogates are PRG and KRG (k=2). 

Case Study 
As previously stated the problem of interest is to find the 
values of the design variables, namely, concentration of 
alkaline, surfactant and polymer, and ASP slug size (expressed 
in the form of the injection time) that maximize the 
cumulative oil production. The ranges of the design variables 
are presented in Table 2. The cumulative oil production is 
calculated at 487 days.  

As illustrated in Fig. 2, the ASP flooding pilot has an 
inverted five-spot pattern and a total of 13 vertical wells, 9 
producers and 4 injectors. The reservoir is at a depth of 4150 
ft., has an average initial pressure of 1770 psi, and the porosity 
is assumed to be constant throughout the reservoir and equal 
to 0.3. The numerical grid is composed of 19x19x3 blocks in 
the x, y and z directions. Figures 3, 4 and 5 show the initial 
reservoir pressure, initial water saturation and horizontal 
permeability fields, respectively. The OOIP is 395,427 bbls, 
the crude oil viscosity is 40 cp, the initial brine salinity is 
0.0583 meq/ml and the initial brine divalent cation 
concentration is 0.0025 meq/ml. The injection scheme is 
described in Table 3. This is the reference configuration 
whose details can be found in the sample data archives of the 
UTCHEM program. 

Three flowing phases and eleven components are 
considered in the numerical simulations. The phases are water, 
oil and microemulsion, while the components are water, oil, 
surfactant, polymer, chloride anions, divalent cations (Ca++, 
Mg++), carbonate, sodium, hydrogen ion, and oil acid. The 
ASP interactions are modeled using the reactions: in situ 
generated surfactant, precipitation and dissolution of minerals, 
cation exchange with clay and micelle, and chemical 
adsorption. 

 Note the detailed chemical reaction modeling, and the 
heterogeneous and multiphase petroleum reservoir under 
consideration.     

 
Results and discussion 
With reference to the case study, a sample of 86 sets of values 
in the four-dimensional design space was generated using a 
modified latin hypercube experimental design. Then, the 
corresponding cumulative oil recovery was calculated for each 
of the cited set of values. Among these input/output pairs the 
maximum, average, and minimum values for cumulative oil 
recovery are 33.58% OOIP (132,784 bbl), 24.27% OOIP 
(95,970 bbl), and 18.06% OOIP (71,414 bbl), respectively. 
Note that the performance of the ASP flooding is significantly 
affected by the values of the design variables, so their optimal 
specification is a critical issue. 

Table 4 presents the optimal values for the design variables 
obtained through the coupled execution of DIRECT and each 
of the surrogate models. For each of these sets of values 
numerical simulations were conducted to assess its true 
performance. For the optimal values suggested by each of the 
surrogates the cumulative oil recovery was greater than those 
obtained within the sample.  

The optimization with the PRG model resulted in the 
greatest objective function value (best solution found), that is, 
35.70% OOIP (134,634 bbl). This point has maximum values 
of surfactant and polymer concentration and injection time. On 
the other hand, the interior solution obtained using the WAV 
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model represents a 5% reduction with respect to the best 
solution found, but with 55%, 13% and 10% lower values of 
surfactant, and polymer concentrations, and injection time, 
respectively which would result in lower costs. The solution 
found using the KRG model has an objective function value 
slightly higher than the corresponding to WAV but with a 
maximum value for polymer concentration.  

The WAV model presents the smallest difference between 
the surrogate estimations for cumulative oil recovery and the 
corresponding values obtained using UTCHEM. This confirms 
the better modeling capabilities of the WAV model (through 
variance reduction) with respect to the individual surrogates.  

The proposed methodology showed to be effective and 
efficient (requires a relatively low number of field scale 
numerical simulations) within the context of the case study, 
can benefit from the increasing availability of parallel 
computing environments, and holds promise to be useful in 
more general scenarios of ASP flooding optimization.  

 
Conclusions 
• An optimization methodology of ASP flooding 

processes has been proposed. The methodology involves 
the coupled execution of a global optimization algorithm 
and fast surrogates (ì.e. based on Polynomial Regression, 
Kriging, Weighted Average Model) constructed from 
field scale numerical simulation data. The global 
optimization program implement the DIRECT algorithm 
and the reservoir numerical simulations are conducted 
using UTCHEM from the University of Texas at Austin.  

• For the set of optimal values suggested by each of the 
surrogates the cumulative oil recovery was greater than 
those obtained within the sample.  

• The interior solution obtained using the WAV model 
represents a 5% reduction with respect to the best 
solution found (corresponding to PRG), but with 55%, 
13% and 10% reduction of the surfactant, polymer 
concentration and injection time, respectively which 
results in lower costs.  

• The WAV model presents the smallest difference 
between the surrogate estimations for cumulative oil 
recovery and the corresponding values obtained using 
UTCHEM. This confirms the better modeling 
capabilities of the WAV model (through variance 
reduction) with respect to the individual surrogates.  

• The proposed methodology showed to be effective and 
efficient (requires a relatively low number of field scale 
numerical simulations) within the context of the case 
study, can benefit from the increasing availability of 
parallel computing environments, and holds promise to 
be useful in more general scenarios of ASP flooding 
optimization.  

 
Nomenclature 
α = weights of the WAV model 
β̂  = estimated parameters 
ε = error 
µ = mean of the population 
θ = correlation parameter 
σ = standard deviation 

f = objective function 
I = identity matrix 
k = number of surrogates 
KRG = Kriging model 
L = n-vector of ones 
p = number of variables 
r = correlation vector 
R = correlation matrix 
PRG = Polynomial Regression model 
s2 = kriging variance 
V = variance 
x = the design variables  
X = constraints set 
WAV = Weighted Average Model 
y = function of interest 
z = prediction variables 
Z = matrix of the prediction variables 
 
Subscripts 
surr = surrogate model 

 
Acknowledgements 
The authors gratefully acknowledge the financial support 
provided to this project by Fondo Nacional de Ciencia, 
Tecnología e Innovación (FONACIT) through Project  
G-97003899, Venezuela. We also thank the Center for 
Petroleum and Geosystems Engineering of The University of 
Texas at Austin for providing the UTCHEM compositional 
simulator. 

 
References 
1.  Dosher T.M. and Wise F.A.: “Enhanced Oil Recovery Potential. 

An Estimate,” Paper SPE 5800, J. Petroleum Technology, May 
1976, 575. 

2.  Clark, S.R., Pitts M.J., and Smith, S.M.: “Design and 
Application of an Alkaline-Surfactant-Polymer Recovery 
System to the West Kiehl,” paper SPE 17538 presented at the 
SPE Rocky Mountain Regional Meeting, Casper, WY, May 11-
13, 1988. 

3.  Meyers, J.J., Pitss, M.J., and Wyatt, K.: “Alkaline-Surfactant-
Polymer Flood of the West Kiehl, Minnelusa Unit,” paper 
SPE/DOE 24144 presented at SPE/DOE Eighth Symposium on 
Enhanced Oil Recovery, Tulsa, Oklahoma, April 22-24, 1992. 

4.  Vargo, J., Turner, J., Vergnani, B., Pitts, M., Wyatt, K., Surkalo, 
H. and Patterson, D.: “Alkaline-Surfactant/Polymer Flooding of 
the Cambridge Field,” paper SPE 55633 presented at the 1999 
SPE Rocky Mountain Regional Meeting, Gillette, Wyoming, 
May 15-18. 

5.  Demin, W., Jiecheng, Ch., Junzheng, W., Zhenyu, Y. and 
Hongfu, L.: “Summary of ASP Pilots in Daqing Oil Field,” 
paper SPE 57288 presented at the 1999 Asia Pacific Improved 
Oil Recovery Conference, Kuala Lumpur, Malaysia, Oct 25-26. 

6.  Rivas H., Gutierrez X., Zirrit J.L., Antón R.E., and Salager J.L.: 
“Microemulsion and Optimum Formulation Occurrence in pH 
Dependent Systems as Found in Alkaline Enhanced Oil 
Recovery,” In Industrial Applications of Microemulsions, C. 
Solans and H. Kunieda, Eds., pp 305-329, M. Dekker, New 
York (1997). 

7.  Shah, D.O., and Schechter, R.S.: Improved Oil Recovery by 
Surfactant and Polymer Flooding, Academic Press Inc. (1977). 

8.  Lake, L.W.: Enhanced Oil Recovery, Prentice Hall, Englewood 
Cliffs, NJ (1989) 408. 



SPE 89387  5 

9.  Salager J.L., Morgan J., Schechter R.S., Wade W.H., and 
Vasquez E.: “Optimum Formulation of Surfactant-Oil-Water 
Systems for Minimum Tension and Phase Behavior,” Soc. 
Petroleum  Eng. J., (1979) 19: 107-115. 

10.  Salager J.L., Bourrel M., Schechter R.S., and Wade W.H.: 
“Mixing Rules for Optimum Phase Behavior Formulation of 
Surfactant-Oil-Water Systems,” Soc. Petrol. Eng. J., (1979) 19: 
271-278. 

11.  Bourrel, M., Salager, J.L, Schechter, R.S, and Wade, W.H.: “A 
Correlation for Phase Behavior of Nonionic Surfactants,” 
Journal of Colloid and Interface Science (June 1980), 75, No. 2, 
451-461. 

12.  Salager, J.L: “Quantifying the Concept of Physico-Chemical 
Formulation in Surfactant-Oil-Water Systems – State of the 
Art,” Progr Colloid Polym Sci (1996), 100:137-142.  

13.  Zhijian, Q., Yigen, Z. Xiansong, Z. and Jialin, D.: “A Successful 
ASP flooding in Gudong Oil Field,” paper SPE 39613 presented 
at the 1998 SPE/DOE Improved Oil Recovery Symposium, 
Tulsa, Oklahoma, April 19-22. 

14.  Manrique, E., De Carvajal, G., Anselmi, L., Romero, C. and 
Chacón, L.: “Alkali/Surfactant/Polymer at VLA 6/9/21 Field in 
Maracaibo Lake: Experimental Results and Pilot Project 
Design,” paper SPE 59363 presented at the 2000 SPE/DOE 
Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 3-
5. 

15.  Qi, Q., Hongjun, G., Dongwen, L. and Ling, D.: “The pilot test 
of ASP Combination Flooding in Karamay Oil Field,” paper 
SPE 64726 presented at the 2000 SPE International Oil and Gas 
Conference an Exhibition, Beijing, China, November 7-10. 

16.  Hernández, C., Chacón, L., Anselmi, L., Baldonedo, A., Qi, J., 
Phillip, C. and Pitts, M.J.: “ASP System Design for an Offshore 
Application in the La Salina Field, Lake Maracaibo,” paper SPE 
69544 presented at the 2001 SPE Latin American and Caribbean 
Petroleum Engineering Conference, Buenos Aires, Argentina, 
March 25-28. 

17.  Wei-Ju Wu,: “Optimum Design of Field-Scale Chemical 
Flooding Using Reservoir Simulation” Ph.D. Thesis, The 
University of Texas at Austin, 1996. 

18.  Giunta, A.A., Balabanov, V., Burgee, S., Grossman, B. Haftka, 
R.T., Mason, W.H., and Watson, L.T.: “Multidisciplinary 
Optimisation of a Supersonic Transport Using Design of 
Experiments Theory and Response Surface Modelling,” 
Aeronautical J., Vol. 101(1008), pp. 347-356, (1997). 

19.  Balabanov, V.O., Haftka, R.T., Grossman, B., Mason, W.H., 
and Watson, L.T.: “Muldisciplinary Response Model for HSCT 
Wing Bending Material Weight,” AIAA Paper 98-4804 
presented at the 1998 7th AIAA/USAF/NASA/ISSMO Symp. 
On Multidisciplinary Anal. and Optim., St. Louis, MO. 

20.  Craig, K.J., Stander, N., Dooge, D.A., and Varadappa, S.: 
“MDO of Automotive Vehicles for Crashworthiness Using 
Response Surface Methods,” AIAA paper 2002-5607 presented 
at the 2002 9th AIAA/ISSMO Symp. on Multidisciplinary Anal. 
and Optim., Atlanta, GA. 

21.  Kurtaran, H., Eskandarian, A., Marzougui, D., and Bedewi, 
N.E.: “Crashworthiness Design Optimization Using Successive 
Response Surface Approximations,” Computational Mechanics, 
Vol. 29, pp. 409-421 (2002). 

22.  Queipo, N.V., Verde, A., Canelón, J., and Pintos, S.: “Efficient 
Global Optimization of Hydraulic Fracturing Designs,” Journal 
of Petroleum Science and Engineering, Vol. 35/3-4 pp. 151- 
166, August (2002). 

23.  Queipo, N.V., Goicochea, J., and Pintos, S.: “Surrogate 
modeling-based optimization of SAGD processes,” Journal of 
Petroleum Science and Engineering, Vol. 35/1-2 pp. 83-93, July 
(2002). 

24.  UTCHEM-9.0 A Three-Dimensional Chemical Flood Simulator, 
Vol. 1 and 2, Reservoir Engineering Research Program, Center 
for Petroleum and Geosystems Engineering, The University of 
Texas at Austin, July 2000. 

25.  McKay, M., Beckman, R. and Conover, W.: “A Comparison of 
Three Methods for Selecting Values of Input Variables in the 
Analysis of Output from a Computer Code,” Technometrics, 
Vol. 21, No. 2, May 1979, pp. 239-245. 

26.  Jones, D.R., Perttunen, C.D., and Stuckman B.E.: “Lipschitzian 
Optimization without the Lipschitz Constant,” Journal of 
Optimization Theory and Applications, Vol. 79, No. 1, pp. 157-
181 (1993). 

27.  Bishop, C.M., Neural Networks for Pattern Recognition, Oxford 
University Press (1995). pp. 364-371. 

28.  Draper, N.R., and Smith, H.: Applied Regression Analysis, John 
Waley & Sons, Inc. (1966) 128. 

29.  Sacks, J., Welch. W., Mitchell, T., and Wynn, H.: “Design and 
Analysis of Computer Experiments,” Statistical Science (1989), 
Vol. 4, pp. 409-435. 

 
TABLE 1 – SUMMARY OF PREVIOUS WORK TOWARD ASP FLOODING OPTIMIZATION 

Optimum 
formulation study Sensitivity 

Authors Parameters 
Lab 

experiments 
Core 
floods 

Core 
scale 

Field 
scale 

Detailed chemical 
reactions  Optimization 

Salager et al. (1978)9

Salager et al. (1978)10
Salinity, ACN, alcohol, surfactant, temperature, 
WOR Yes No - - - No 

Bourrel et al. (1980)11
Salinity, ACN, EON of the surf., alcohol, 
hydrophobic molecular weight of the surf., 
temperature 

Yes No - - - No 

Zhijian et al. (1998)13 Chemical agents, chemical concentrations, slug 
size, fluid-rock interactions Yes No No Yes Yes No 

Manrique et al. (2000)14 Salinity, chemical agents, chemical concentration, 
temperature, fluid-rock interactions Yes Yes Yes No No No 

Qi et al. (2000)15 Salinity, chemical agents, chemical 
concentrations, pH, fluid-rock interactions Yes Yes Yes No No No 

Hernández et al. (2001)16 Salinity, chemical agents, chemical concentration, 
temperature, fluid-rock interactions Yes Yes Yes No No No 

Wei-Ju Wu (1996)17
Reservoir properties, chemical agents, chemical 
concentrations, chemical reactions, fluid-rock 
interactions, slug size, chemical adsorption 

No No Yes Yes Yes No 

Zerpa et al. 
(Present work) Chemical concentration, slug size No No No No Yes Yes 
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TABLE 2 – DESIGN VARIABLE RESTRICCIONS 

RANGE 
DESING VARIABLE 

Min Max 
UNITS 

Alkaline Concentration (Na2CO3)  0 0.5898 meq/ml 
Surfactant Concentration 0.001815 0.01 Vol. fract. 
Polymer Concentration 0.0487 0.1461 wt% 
Injection time 111 326 days 

 
 

TABLE 3 – INJECTION SCHEME 

Component concentration  
Slug   

Inj. 
time 

(days) 
PV 

Cw1 Csurf1 Cpol2 Ccl3 Cca3 Cmg3 Cco33 Cna3 Ch+ 3

Polymer 
preflush 26 0.05 1.0 0 0.0974 0.015667 0.0019 0.004774 0.009122 0.01461 111.0034 

AS 
preflush 25 0.1 0.99574 0.00426 0 0.07168 0.0034 0.0067 0.3339 0.52517 111.0767 

ASP slug 715 0.41 0.99637 0.00363 0.0974 0.04948 0.0067 0.00831 0.3351 0.3929 111.839 

Polymer 
drive 50 0.5 1.0 0 0.05 0.03586 0.00665 0.00132 0.0164 0.09 111.0034 

Postflush 275 1.0 1.0 0 0 0.0135 0.00185 0.004774 0.008 0.0146 111.0034 

1. Conc. unit = Vol. fract. 
2. Conc. unit = wt% 
3. Conc. unit = meq/ml 

 
 

TABLE 4 –OPTIMIZATION RESULTS  

Surrogate-based optimal solution Objective function (COP %OOIP) 

MODEL 
Cna 

 [meq/ml] 
Csurf 

[Vol. fract.] 
Cpol  
[wt%] 

Injection 
time [days] Surrogates UTCHEM  

Polynomial Regression 0.3080 4.9993E-03 0.1200 326 32.17 
(127,218 bbl) 

35.70 
(141,167 bbl) 

Kriging 0.3060 3.8196E-03 0.1200 282 36.40 
(143,929 bbl) 

34.84 
(137,767 bbl) 

Weighted Average Model 0.3058 2.2934E-03 0.1047 292 34.05 
(134,634 bbl) 

33.86 
(133,892 bbl) 

 
 

Sampling of the design space (input)

Objective function evaluations for the input sample (output)

Construction of surrogate models using input/output pairs

Surrogate-based optimization

Evaluation of surrogate-based optimal solutions

Sampling of the design space (input)

Objective function evaluations for the input sample (output)

Construction of surrogate models using input/output pairs

Surrogate-based optimization

Evaluation of surrogate-based optimal solutions  
 

Fig. 1 – Architecture of the proposed methodology 
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Fig. 2 – Well pattern illustration 

 
 
 

 
Fig. 3 – Initial reservoir pressure distribution 

 

 
Fig. 4 – Initial water saturation field 

 
 
 

 
 

Fig. 5 – Horizontal permeability  field 
 
 
 
 
 


