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Abstract This paper presents an integrated approach for
the solution of complex optimization problems in ther-
moscience research. The cited approach is based on the
design of computational experiments (DOE), surrogate
modeling, and optimization. The DOE/surrogate mod-
eling techniques under consideration include: A-opti-
mal/classical linear regression, Latin hypercube/artificial
neural networks, and Latin hypercube/Sugeno-type
fuzzy models. These techniques are coupled with both
local (modified Newton’s method) and global (genetic
algorithms) optimization methods. The proposed ap-
proach proved to be an effective, efficient and robust
modeling and optimization tool in the context of a case
study, and holds promise for use in larger scale opti-
mization problems in thermoscience research.
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Nomenclature

ANN Artificial neural network
C Characteristic length (m)
CAD Computer-aided design

Cl Cluster

CLR  Classical linear regression
CVD  Chemical vapor deposition
DOE Design of experiments

F() Activation function

FM Fuzzy model

K Heat spreader conductivity (W/mK)

L() Logistic function

P Power dissipation (W)

SM Surrogate modeling

T Maximum temperature on the heat source (°C)
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V Weight matrix associated with the input layer of
an artificial neural network

w Weight matrix associated with the hidden layer
of an artificial neural network

h Heat transfer coefficient (W/m?* K)
k Substrate conductivity (W/mK)
max  Maximum error (°C)

min Minimum error (°C)

mse Mean square error (°C)

X Vector of design variable values

Greek symbols
0 Dimensionless parameter used in the perturbed
version of the case study

u(.)  Membership value of the argument to a given
cluster
Subscripts

I Number of cluster

1 Introduction

The optimal design of complex systems in thermoscience
rescarch has been limited by the fact that accurate nu-
merical simulations associated with models for some of
its most significant problems remain too resource in-
tensive to be efficiently incorporated in traditional en-
gineering optimal design efforts. As an example,
consider the optimal design of electronic systems under
continuously reduced design cycles with increasing
power dissipation needs and restrictions regarding
weight and power consumption.

In order to address this problem, for optimization
purposes, the construction of lower fidelity models
or surrogate models that could be used instead of the
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original (computationally expensive) one has been sug-
gested [1, 2]. Issues critical to this approach include: (1)
sampling the design space for screening and surrogate
modeling construction using the accurate numerical
model, (2) constructing and validating the surrogate
model, and (3) using optimization approaches. If these
issues are properly addressed, surrogate model-based
optimization becomes an effective and efficient tool for
complex system design.

There are a variety of alternatives for these different
issues, for example, for issue (1) Latin hypercube sam-
pling, fractional design, and A-optimal and D-optimal
sampling; issue (2) classical nonlinear regression, artifi-
cial neural network (ANN) models, and fuzzy models;
and issue (3) local gradient-based methods (e.g., mod-
ified Newton’s method), local direct search methods
(e.g., downhill simplex method) and global search (e.g.,
genetic algorithms) optimization methods. A number of
authors have focused their attention on particular
methods or issues. For example, Bernardo et al. [3] ad-
dress the optimization of integrated circuit design using
sequential experimentation, the modeling of CAD si-
mulator outputs as realizations of stochastic processes,
and an adaptive random search algorithm for optimi-
zation purposes. Xie et al. [4], proposed a gradient-based
optimization procedure that incorporates Taguchi ex-
perimental designs and fuzzy surrogate models; their
strategy has been applied to the optimization of a ver-
tical CVD process. Yesilyurt and Patera [2] present a
Bayesian-validated statistical framework for the con-
struction and validation of surrogates from computer
models and illustrate their methodology with the opti-
mization of eddy-promoter heat exchangers. Yesilyurt
et al. [5] have expanded their methodology to consider
noisy computer simulations and have applied it to the
problem of predicting the effective conductivity of a
random fibrous composite material. Osio and Amon [6]
developed an adaptive engineering design methodology
based on Bayesian surrogates for the efficient use of
computer simulations of physical models, and evaluated
its performance with the assistance of a known analy-
tical function and a thermal design problem of an em-
bedded electronic chip configuration.

This study presents an integrated approach for the
solution of complex optimization problems in thermo-
science research with different alternatives for surrogate
model-based optimization. Specifically, A-optimal/clas-
sical linear regression (CLR) analysis, Latin hypercube/
ANN, and Latin hypercube/fuzzy model (Sugeno type).
These alternatives are coupled with local (modified
Newton’s method) and global (genetic algorithms) op-
timization methods. Their relative performance is eval-
uated using a case study that considers a model for the
problem of finding the optimal thermal design of an
embedded electronic configuration, a manufacturing
alternative for portable and handheld electronic systems
[7-8]. The evaluation considers modeling (mean square
error, maximum and minimum error) and optimization
criteria.

2 Problem definition

In general, the problem under consideration can be
stated as follows: What is the set of boundary con-
ditions, initial conditions or parameter values asso-
ciated with a thermofluid field problem, denoted by ¥
so that a given vector of objective functions, f(X), is
minimized?

In thermoscience research, the cited optimization
problem has in general, some special features, namely:

Time consuming and limited number of objective function
evaluations The objective function evaluations usually
involve the numerical solution of a thermofluid field
problem. As a result, each objective function evaluation
requires the solution of a set of nonlinear partial dif-
ferential equations which, in general, are computation-
ally demanding and require a significant amount of
computer time. Considering the time constraints im-
posed by most analysis/design environments, in parti-
cular those associated with the electronic industry, the
possible number of objective function evaluations to be
conducted in thermoscience research optimization pro-
blems are seriously constrained.

Large design space and nonlinear solution space The
problem at hand is typically an inverse problem. Con-
sequently, the design space is rather large, with the ad-
ded difficulty that due to the nonlinear nature of the
problem under consideration, the superposition princi-
ple does not apply and cannot be used to simplify the
search for optimal solutions.

Some representative examples are:

Eddy-promoter heat exchangers For a given thermo-
fluid configuration, what is the eddy-promoter place-
ment and radius, which minimize pumping power and
eddy-promoter volume, and maintain a temporally and
spatially average bottom-wall heat flux not significantly
lower than a given nominal value? [2]

Industrial furnace design What should be the burner
placement and characteristics, furnace geometry and
material properties, which minimize the difference be-
tween the expected temperatures and heat fluxes in the
furnace and those provided by the design?

Thermal design of electronic systems For a given ther-
mofluid configuration, what set of parameters (e.g., ma-
terial properties, and geometric characteristics), would
provide the minimum operating temperatures, subject to
electrical, manufacturing, and cost constraints?

Here, attention is given to the special case in which
the problem involves a single objective function and
simple bound restrictions on the design variables. The
extensions to account for multiple objectives and re-
strictions are available in the literature [9-11].
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Fig. 1 A schematic representation of the proposed solution
methodology

3 Solution methodology

This section provides a description of the proposed solu-
tion methodology (see Fig. 1), in terms of its main con-
stituents, algorithm of execution, and implementation.

3.1 Main constituents

3.1.1 Design of computational experiments ( DOE)

The purpose of this component is to make an efficient
and representative sampling of the design/solution
space. At the points in the design space selected by this
component, the computationally expensive and time
consuming original model (in contrast to the surrogate
model to be discussed shortly) is executed, and the
corresponding objective function values are calculated.
The collected data is divided into two parts: Training
data, for constructing the models, and Testing data, for
evaluating the prediction ability of the constructed
models. These data are used in the construction and
validation of the surrogate models. In this paper,
random sampling, Latin hypercube, and A-optimal
sampling approaches are used within the context of
different surrogate modeling techniques and stages of
the solution methodology. A detailed discussion on the
subject of DOE and these sampling schemes is provided
by Rao [12], Mitchel [13] and McKay et al. [14].

3.1.2 Surrogate modeling (SM )

This module constructs lower fidelity, easy to evaluate
yet effective surrogate models from the data collected
during the DOE stage of the solution methodology.
After proper validation of their prediction capabilities,
these surrogate models are used in the context of
optimization processes. The DOE strategies recently
mentioned are coupled with surrogate modeling
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approaches, namely, A-optimal sampling with CLR,
and Latin hypercube sampling with ANN and fuzzy
modeling approaches. Hecht-Nielsen [15], among others,
provides a good introduction to the area of function
approximation using ANN. The modeling of Sugeno-
type fuzzy systems (the ones considered in this work) is
discussed in detail by Takagi and Sugeno [16] and
Sugeno and Kang [17].

3.1.3 Optimization

The optimization procedures should identify the vector
of variables, ¥, that minimizes the objective function,

f(¥), using a surrogate model. The corresponding

objective function value is calculated using the original
model with the variables suggested by the optimization
module. Both local gradient-based (modified Newton’s
method) and global (Genetic Algorithms) optimization
procedures are considered in the context of this work. A
discussion on the subject of genetic algorithms as
adaptive search procedures for global optimization can
be found in the books by Holland [18] and Goldberg
[19]; for an introduction to Genetic Algorithms in the
context of thermoscience research see, for example,
Queipo et al. [20].

3.2 Algorithm of execution

With reference to Fig. 1, in stage 1 of the solution
methodology, the original model is evaluated at selected
values of the design variables, as specified by an
appropriate DOE/surrogate modeling alternative. With
the collected data, the surrogate model is constructed
and validated (stage 2); if necessary, additional sampling
points are introduced within the context of the previous
stage. In stage 3, the validated surrogate model is
introduced in an optimization loop; then, the objective
function value corresponding to the solution obtained
by the optimization procedure is calculated using the
original model (stage 4).

3.3 Implementation

The solution methodology is implemented using a
combination of both commercial and academic soft-
ware. The statistical analysis system (SAS), specifically
the procedures OPTEX and REG were used for the
design of A-optimal data sets and the development of
the linear regression model, respectively. The ANN and
Fuzzy Models (Sugeno type) were generated with the
assistance of the Stuttgart neural network simulator
(SNNS), available through an anonymous ftp at the
machine ftp.informatik.uni-stuttgart.de in the directory/
pub/SNNS, and the Software for Inducing Fuzzy
Models (SIFM), respectively. The SIFM computer code
was developed by two of the authors (NQ; CA) using
Matlab, and implements a modified version of an
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algorithm proposed by Wang and Langary [21] for the
induction of rules from examples. The optimization
procedures for gradient-based (modified Newton’s
method) and global search (Genetic Algorithms) meth-
ods were provided by Matlab (CONSTR procedure),
and the GAucsd system, respectively. The GAucsd sys-
tem is available from an anonymous ftp at the machine
cs.ucsd.edu in the pub/GAucsd directory.

4 Case study

The proposed solution methodology is illustrated using
a model for the problem of finding the optimal thermal
design of embedded electronic components of wearable
computers [7]. With reference to Figs. 2 and 3, the model
seeks to find the set of design variables: chip power level
(P), substrate conductivity (k), heat spreader con-
ductivity (K), heat transfer coefficient (4), and char-
acteristic length (C), that will minimize the maximum
temperature in the heat source (7), modeling an elec-
tronic component. Note that the substrate and heat
spreader conductivities are assumed to be continuous
variables as the materials are considered to be polymer
composites (conductive filler and polymer). The dimen-
sion of the chip is 25x25x6 mm?, the package thickness
is 20 mm, and the heat spreader thickness is 2 mm.
Table 1 provides the interval of interest for each of the
design variables.

4.1 Original version
This version of the case study corresponds to the pro-

blem under consideration as previously described. It
provides the opportunity to evaluate the performance of
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Fig. 2 A schematic representation of middle plane of an embedded
chip configuration (case study)

Fig. 3 A perspective of an embedded chip configuration (case
study)

Table 1 Embedded chip case study: design variables and ranges

Design variable Low level High level Units
P 1.0 3.0 w

k 14.7 116 W/mK
K 237.0 401.0 W/mK
h 5.0 10.0 W/m’K
C 0.007 0.012 m

the proposed solution methodology considering the in-
fluence of these variables on the temperature of the chip
and the optimal design is known.

4.2 Perturbed version

To evaluate the robustness of the different alternatives
for surrogate model-based optimization, a variation of
the case study that includes a sinusoidal nonlinear per-
turbation is also considered. This version establishes
that the temperature of the heat source, modeling an
electronic component, is equal to that provided by the
original version (T) plus an additional term in degrees
Celsius equal to - e~ (110-1)/20 . gip (%)

The perturbation is a sine wave with changing ampli-
tude and period for increasing values of 7. Throughout
the study the parameter 6 was assumed to be equal to 5,
which represents a perturbation of up to 15% of the
temperature values expected for the original version.

For the purpose of this work, the simulations neces-
sary for predicting the temperature on the heat source
and the construction of the surrogate models were cal-
culated using a thermal resistive network approach. In a
real design environment, the cited simulations would be
conducted using numerical approaches (e.g., finite dif-
ferences, finite elements, spectral methods, etc.) for sol-
ving the conservation equations. The thermal resistive
network was formulated using the information provided
by the geometry of the embedded chip configuration
under study, and the values specified for the design
variables [7].



5 Results and discussion

This section presents and discusses the results of ap-
plying the proposed solution methodology to the origi-
nal (with known optimal solutions) and perturbed
versions of the selected case study. The different alter-
natives of DOE and surrogate modeling, that is, A-op-
timal/CLR, Latin hypercube/ANN, and Latin
hypercube/fuzzy models, are evaluated in terms of their:
(1) mean square error, and maximum and minimum
error over training and validation data sets, and (2)
robustness, when addressing variations (nonlinear per-
turbations) of the case study under consideration. The
optimization procedures were evaluated in terms of their
suggested minimum objective function values. Note that
the number of objective function evaluations to reach
the optimum value was not included as a performance
criterion because the optimization procedures are con-
ducted coupled with the surrogate (easy to evaluate
model) instead of the computationally expensive and
time consuming one.

5.1 Preliminary considerations

The number of numerical simulations conducted using
the original model, for the case study under considera-
tion was limited to 30 as in Osio and Amon [6]. The data
used for the construction of the surrogate models
reported in this study is available through ftp at the
machine vibora.ica.luz.ve in the directory pub/WAM9S.

Each experimental design was repeated under three
different random seeds. The reported results for the cor-
responding modeling techniques were those associated
with the median.

The A-optimal designs were generated through an
exchange-type algorithm starting with a larger Latin
hypercube design.

The testing phase was conducted using a random
sampling of size equal to 10,000 in order to fully test the
prediction ability of the DOE/surrogate modeling
alternatives.

The linear regression model was assumed to be quad-
ratic, including main effects, two-factors, and quadratic
factors. The coefficients in the regression model were
considered to be significant when a z-test gave a confidence
level of 95%.

The optimum number of artificial neurons in the
hidden layer was found to be two (2) versions of the case
study. In addition, the training algorithm was the stan-
dard back propagation with initial values provided by
the best solution obtained by Monte Carlo optimization.
The data was linearly normalized so that it meets the
requirements of the activation function (F).

The output of the ANN model is calculated accord-
ing to the following expression:

T(X)=L[W x (L[V x X])]
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wherein the letters " and W denote weight matrices as-
sociated with the input-hidden and hidden-output layers,
and the letter L(.) represents the logistic function. The
vector X identifies a given vector of design variable values.

The number of clusters in the fuzzy model was set to
four and the membership values of the input data given
by the experimental designs to each of these clusters was
specified using the Fuzzy C-means Algorithm [22]. The
number of clusters was specified such that in each clus-
ter, there were at least as many data points as the
number of design variables plus one.

The fuzzy model output is calculated using the fol-
lowing expression:

wherein, 7 identifies the cluster under consideration, y;
(.) the membership value of a given vector of design
variable values X to the cluster 7, and T,(.) denotes the
local output of the rule (R;).

The Genetic Algorithm was set to run with a chro-
mosome length of 50 bits (10 bits per design variable)
and the genetic parameters, such as population size,
crossover, and mutation rate, were set as suggested by
the heuristics encoded in the program GAucsd. The
local optimization procedure used a random value as the
starting point.

5.2 Case study—original version

Table 2 presents a summary of the results obtained
corresponding to the original version of the case study.
All the modeling techniques provided an excellent
approximation under the training and testing phases,
with the mean square error (°C) and maximum error
(°C) in the intervals [0.01, 0.57] and [0.19, 5.53],
respectively. During the rraining phase, the Latin
hypercube/ANN model exhibited the best performance
with mse and maximum errors of 0.01 and 0.19°C,
respectively; however, during the festing stage the best
modeling performance was exhibited by the A-optimal/
CLR model, followed by the Latin hypercube/ANN and

Table 2 Modeling and optimization performance of different doe/
surrogate modeling strategies (case study/original version)

DOE/surrogate
modeling

Training Optimization

(Tc/zip)
Mse Max Min Mse Max Min Local Global

Testing

A-optimal/CLR  0.10 0.87 0.02

Latin hypercube/ 0.01 0.19 0.00
ANN

Latin hypercube/ 0.15 0.92 0.03
FM

0.09 1.42 0.00
0.15 4.44 0.00

30.33 30.37
30.17 30.16

0.57 5.53 0.00 29.79 29.93




Fig. 4 Artificial neural network model (case study/original version)

Latin hypercube/FM models. The A-optimal/CLR and
the Latin hypercube/FM models are expressed by Egs. 1
and 2, respectively. The Latin hypercube/ANN model is
depicted in Fig. 4.

T =0.3040.77P — 0.40h — 0.06C — 0.39P - h

1
+0.10P- C +0.254* (1)

Ry : ifX¥ € Cl; then T = 0.0+ 0.40P 4 0.22k
Ry: if¥ € Clythen o = 0.13 + 0.82P 4 0.08k — 0.25h
Ry : if ¥ € Clz then 73 = 1.02 + 0.71P — 0.62k — 0.92)

Ry : if X € Cly then 7} = 0.36 + 0.06P — 0.18C

(2)

These differences at the modeling stage did not affect
their suggested minimum objective function values un-
der local or global optimization procedures. In all cases,
the suggested values were set equal to approximately
30°C, that is, right at the known optimum value
(29.73°C). However, this value was suggested as a result
of different solutions found in the design space. Table 3
shows the solutions in the design space suggested as
optimal under alternative modeling and optimization
techniques. Note that the design variables, conductivity
of the substrate (k) and conductivity of the heat spreader
(K), as in Osio and Amon [6], do not seem to be sig-
nificant in this particular case. This latter result would be
suggested by a dimensional analysis.

5.3 Case study—perturbed version

Equations 3 and 4 display the A-optimal/CLR, and
Latin hypercube/FM surrogate models when the origi-
nal case study is subject to an additive nonlinear per-
turbation, as discussed in a previous section. The

Fig. 5 Artificial neural network model (case study/perturbed
version)

corresponding Latin hypercube/ANN model is shown in
Fig. 5.

T=02940.63P —0.41h —0.39P - h

3
+ 0252 — 0.03C2 +0.12P2 3)
Ry : if¥€Cl, then T, = 1.18 — 0.26P — 0.70h
R, :if ¥ € Cl, then T» = 0.48 + 1.00P — 0.60/ — 0.27C
R;: if ¥ € Cl; then 75 = 0.49P

Ry: if ¥ € Cly then Ty = 1.00P — 0.26A

4)

As shown in Table 4, all the DOE/surrogate modeling
techniques adjusted reasonably well to the nonlinear
perturbation, and exhibited a robust behavior con-
sidering the nature and size of the perturbation, and the
fact that the sample size to construct them remained
constant (30). During the training and testing phases, the
A-optimal/CLR model exhibited the best performance
with an mse of 0.48°C (1.51°C) and a maximum error of
1.83°C (6.59°C) during the training (testing) stage. This
may be explained by the additive nature of the pertur-
bation, which goes well with the structure of the CLR
model (Y= X-f +¢) that provides the possibility to easily
adjust to random-like perturbations. In design problems
associated with significant nonlinear interactions among
the design variables, not easily captured through simple
factors, the ANN and FM modeling alternatives are
expected to outperform the CLR approach.

The different optimization procedures also showed
a robust behavior, providing suggested minimum
objective function values within small fractions of the
optimum value (29.37°C). The solutions in the design
space provided by the different DOE/surrogate model-
ing and optimization techniques were not, in general,
significantly altered by the nonlinear perturbation.

Table 3 Optimal suggested

values in the design space under DOE/surrogate Local optimization Global optimization

alternative doe/surrogate and modeling

optimization strategies (case Pk K h C Pk K h C

study/original version)
A-optimal/CLR 1.0 19.5 3483 9.0 0.012 1.0 29.50 270.4 9.10 0.012
Latin hypercube/ANN 1.0 116.7 401.0 100 0.012 1.0 8848 4000 995 0.012
Latin hypercube/FM 1.0 147 401.0 100 0.012 1.0 1142 260.0 10.0 0.012




Table 4 Modeling and optimization performance of different doe/
surrogate modeling strategies (case study/perturbed version)

DOE/surrogate  Training Testing Optimization
modeling (Tenip)
Mse Max Min Mse Max Min Local Global
A-optimal/ 0.48 1.83 0.12 1.15 6.59 0.00 30.07 30.09
CLR
Latin hypercube/ 0.80 2.13 0.00 2.59 10.32 0.00 31.34 31.36
ANN
Latin hypercube/ 1.11 2.57 0.11 2.25 8.79 0.00 29.43 29.68

M

6 Conclusions

This paper discussed an integrated approach for
addressing complex optimization problems in thermo-
science research. The approach incorporates a variety of
DOE/Surrogate modeling and Optimization techniques.
The DOE/Surrogate modeling techniques include:
A-optimal/CLR, Latin hypercube/ANN, and Latin
hypercube/Sugeno-type fuzzy models coupled with local
(modified Newton’s method) and global (genetic
algorithms) optimization methods.

The proposed approach proved to be an effective,
efficient, and robust strategy in the context of a model
for the optimal thermal design of embedded electronics
(case study). It provided surrogate models with excellent
prediction capabilities and generated known optimal
solutions (effectiveness), with a small number of objec-
tive function evaluations involving the original model
(efficiency), and with good adjustment to additive ran-
dom-like nonlinear perturbations (robustness).

The proposed integrated approach has the flexibility
to tackle increasingly complex modeling and optimiza-
tion problems, even with multimodal solution spaces. As
a result, it holds promise for use in larger scale nonlinear
optimization problems in thermoscience research.
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