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Abstract

After conventional waterflood processes the residual oil in the reservoir remains as a discontinuous phase in the form of

oil drops trapped by capillary forces and is likely to be around 70% of the original oil in place (OOIP). The EOR method so-

called alkaline–surfactant–polymer (ASP) flooding has proved to be effective in reducing the oil residual saturation in

laboratory experiments and field projects through the reduction of interfacial tension and mobility ratio between oil and water

phases.

A critical step to make ASP floodings more effective is to find the optimal values of design variables that will maximize a

given performance measure (e.g., net present value, cumulative oil recovery) considering a heterogeneous and multiphase

petroleum reservoir. Previously reported works using reservoir numerical simulation have been limited to sensitivity analyses at

core and field scale levels because the formal optimization problem includes computationally expensive objective function

evaluations (field scale numerical simulations). This work presents a surrogate-based optimization methodology to overcome

this shortcoming.

The proposed approach estimates the optimal values for a set of design variables (e.g., slug size and concentration of the

chemical agents) to maximize the cumulative oil recovery from a heterogeneous and multiphase petroleum reservoir subject to

an ASP flooding. The surrogate-based optimization approach has been shown to be useful in the optimization of

computationally expensive simulation-based models in the aerospace, automotive, and oil industries. In this work, we improve

upon this approach along two directions: (i) using multiple surrogates for optimization, and (ii) incorporating an adaptive

weighted average model of the individual surrogates.

The cited approach involves the coupled execution of a global optimization algorithm and fast surrogates (i.e., based on

Polynomial Regression, Kriging, Radial Basis Functions and a Weighted Average Model) constructed from field scale
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numerical simulation data. The global optimization program implements the DIRECT algorithm and the reservoir numerical

simulations are conducted using the UTCHEM program from the University of Texas at Austin.

The effectiveness and efficiency of the proposed methodology is demonstrated using a field scale case study.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

After conventional waterflood processes the resid-

ual oil in the reservoir remains as a discontinuous

phase in the form of oil drops trapped by capillary

forces and is likely to be around 70% of the original

oil in place (OOIP) (Dosher and Wise, 1976). The

EOR method so-called alkaline–surfactant–polymer

(ASP) flooding has proved to be effective in reducing

the oil residual saturation in laboratory experiments

and field projects through the reduction of interfacial

tension and mobility ratio between oil and water

phases. Some ASP pilot tests reported in the literature

have reached an oil recovery over 60% OOIP (Clark

et al., 1988; Meyers et al., 1992; Vargo et al., 1999;

Demin et al., 1999).

In ASP floodings the surfactant is responsible for

reducing the interfacial tension between oil and water

phases to a level that promotes the mobilization of

trapped oil drops. The alkaline agent is intended to react

with the acids to generate in situ surfactant (Rivas et al.,

1997) to overcome the surfactant depletion in the liquid

phases due to retention. The role of the polymer is to

increase the viscosity, reducing the mobility ratio and

hence allowing a greater volumetric swept efficiency.

Details of the physical processes taking place can be

found in, for example, Shah and Schechter (1977).

The design of an ASP flooding process must

achieve three main objectives: propagation of the

chemicals in an active mode, the injection of enough

chemicals accounting for the retention, and a complete

swept of the area of interest (Lake, 1989). Achieving

these objectives is significantly affected by the

selection of the chemicals, the concentration of the

ASP solution and the slug size, among other factors.

Previous works toward the optimization of ASP

processes have concentrated mainly around identify-

ing formulations that will achieve minimum interfa-

cial tension using laboratory experiments and

empirical correlations (Salager et al., 1979a,b; Bourrel
et al., 1980; Salager, 1996), and sensitivity analyses

using numerical simulation at core and field scale

levels (Wei-Ju, 1996; Zhijian et al., 1998; Manrique et

al., 2000; Qi et al., 2000; Hernández et al., 2001).

Table 1 presents a summary of these works and shows

that the formal optimization of ASP flooding has not

been addressed. The latter is a critical step to find the

optimal parameters that will maximize a given

performance measure (e.g., net present value, cumu-

lative oil recovery) considering a heterogeneous and

multiphase petroleum reservoir.

The cited formal optimization has been limited

due to the high computational cost exhibited by the

numerical simulations at the reservoir level, which

makes impractical the coupled execution of the

simulator and optimization algorithms. The surro-

gate-based optimization approach has been shown to

be useful in the optimization of computationally

expensive simulation-based models in the aerospace

(Giunta et al., 1997; Balabanov et al., 1998),

automotive (Craig et al., 2002; Kurtaran et al.,

2002), and oil industries (Queipo et al., 2002a,b).

Surrogate-based design makes reference to the idea

of constructing an alternative fast model (surrogate)

from numerical simulation data and using it for

optimization purposes. In this work, we improve

upon this approach along two directions: (i) using

multiple surrogates for optimization, and (ii) incor-

porating an adaptive weighted average model of the

individual surrogates. The rationality of these

improvements is described in later sections of the

paper.

The proposed methodology estimates the optimal

parameters (slug size and concentration of the chemical

agents) to maximize the cumulative oil recovery from a

heterogeneous and multiphase petroleum reservoir

subject to an ASP flooding. The methodology involves

the coupled execution of a global optimization algo-

rithm and surrogates (based on Polynomial Regression,

Kriging, Radial Basis Functions and a Weighted



Table 1

Summary of previous work towards ASP flooding optimization

Authors Parameters Optimum formulation study Sensitivity Detailed

chemical

reactions

Optimization

Laboratory

experiments

Core

floods

Core

scale

Field

scale

Salager et al. (1978),

Salager et al. (1979a,b)

Salinity, ACN, alcohol,

surfactant, temperature,

WOR

Yes No – – – No

Bourrel et al. (1980) Salinity, ACN, EON of

the surf., alcohol, hydrophobic

molecular weight of the surf.,

temperature

Yes No – – – No

Zhijian et al. (1998) Chemical agents, chemical

concentrations, slug size,

fluid–rock interactions

Yes No No Yes Yes No

Manrique et al. (2000) Salinity, chemical agents,

chemical concentration,

temperature, fluid–rock

interactions

Yes Yes Yes No No No

Qi et al. (2000) Salinity, chemical agents,

chemical concentrations,

pH, fluid–rock interactions

Yes Yes Yes No No No

Hernández et al. (2001) Salinity, chemical agents,

chemical concentration,

temperature, fluid–rock

interactions

Yes Yes Yes No No No

Wei-Ju (1996) Reservoir properties,

chemical agents, chemical

concentrations, chemical

reactions, fluid–rock

interactions, slug size,

chemical adsorption

No No Yes Yes Yes No

Zerpa et al.

(present work)

Chemical concentration,

slug size

No No No No Yes Yes
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Average Model) constructed from field scale numerical

simulation data.

The methodology is evaluated using a field scale

case study based on an ASP flooding pilot available in

the sample data archives of the UTCHEM program of

the University of Texas at Austin.
2. Problem of interest

Fig. 1 illustrates the typical stages in an ASP

flooding process, namely: a preflush of brine to

lower the salinity of the reservoir, an ASP solution

used to reduce the interfacial tension between the

aqueous and oleic phases, a polymer solution to

perform a uniform sweep of the oil and the previous
slugs, and chase water to finally drive the oil and the

chemicals to the producer wells.

In this study we assume that the chemicals for the

EOR process have been already selected, and that a

preview design of the ASP flooding process is

available. Then, the problem of interest is the opti-

mization of the ASP solution injection stage, which is

considered the most important in the design because it

is responsible for the oil mobilization and the reduction

of the oil residual saturation. More specifically:

find xaXpRp

such that

f xð Þ is maximized

where f is the cumulative oil recovery (computa-

tionally expensive objective function), x represents p
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Fig. 1. Typical design of an ASP flooding process.
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design variables, namely, slug size and the chemical

concentrations, and X is the feasible region that

satisfies simple bounds constraints (ximinbxi bximax;

with i=1, 2,. . ., p). Note that the computationally

expensive nature of the objective function evalua-

tions limits the possible solution approaches to those

satisfying the time restrictions typically present in

the oil industry.
Sampling of the design space (input)

Objective function evaluations for the input sample (output)

Construction of surrogate models using input/output pairs

Surrogate-based optimization

Evaluation of surrogate-based optimal solutions

Sampling of the design space (input)

Objective function evaluations for the input sample (output)

Construction of surrogate models using input/output pairs

Surrogate-based optimization

Evaluation of surrogate-based optimal solutions

Fig. 2. Architecture of the proposed methodology.
3. Solution methodology

With reference to Fig. 2, the proposed method-

ology involves the following steps:

1. Generate a sample of the design variables space

using a modified latin hypercube experimental

design. This sampling procedure has been shown

to be very effective for selecting values of input

variables for the analysis of the output of a

computer code (McKay et al., 1979).

2. Conduct numerical simulations (via the program

UTCHEM) using the sample (input) from the

previous step and obtain the corresponding objec-

tive function values (output).

3. Using the input/output pairs obtained in the

previous steps, construct multiple surrogate models

based on Polynomial Regression, Kriging, Radial

Basis Functions and a Weighted Average Model.
This surrogate models will be discussed later in

this section. In this work the surrogates were coded

using MATLABR.
4. Solve the optimization problem of interest by

coupling the execution of a global optimization

algorithm (a modified Lipschitzian method called

DIRECT developed by Jones et al., 1993) with

each of the surrogates constructed in step 3.

5. Conduct numerical simulations using the optimal

values obtained in the previous step to confirm

their performance level. The designer now selects

among the best confirmed design values the

solution that satisfies the most his preference

structure.
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3.1. Surrogate modeling

It is an inverse problem where due to the limited

amount of available data: (i) alternative surrogates can

provide reasonable approximations to function f, and

(ii) each surrogate may offer the best fit to f depending

on the region of the design space. Since the location of

the optimal design values is unknown we suggest the

use of multiple surrogates considering they can be

constructed at no significant additional computational

cost. Three alternative surrogate models, namely,

Polynomial Regression (PRG), Kriging (KRG), and

Radial Basis Functions (RBF) are considered. In

addition, a Weighted Average Model (WAV) of these

surrogates is also included. The WAV can be shown to

reduce the variance estimation with respect to that of

the individual surrogates (Bishop, 1995). Throughout

this section, given the stochastic nature of the

surrogates, the available data is assumed a sample of

a population.

3.1.1. Polynomial regression model (PRG)

The regression analysis is a methodology that

studies the quantitative association between a function

of interest y, and m prediction variables zj, where

there are n values of the function of interest yi, for a

set of prediction variable values zi
j (Draper and Smith,

1966). For each observation i a linear equation is

formulated as:

yi ¼
Xm
i¼1

bjz
j
i þ ei E eið Þ ¼ 0 V eið Þ ¼ r2 ð1Þ

where the errors ei are independents with expected

value equal to zero and variance r2. The estimated

parameters b̂j (by least squares) are unbiased and have

minimum variance.

Eq. (1) is expressed in matrix form as:

y ¼ Zb þ e E eð Þ ¼ 0 V eð Þ ¼ r2I ð2Þ

where Z is an n�m matrix with the prediction

variable values. The vector of the estimated parame-

ters can be calculated as:

b̂b ¼ ZTZ
� ��1

ZTy ð3Þ
Considering a new set of design values z, the

variance of the predicted response zTb̂ can be calcu-

lated as:

V y zð Þð Þ ¼ r2 zT ZTZ
� ��1

zþ 1
� �

ð4Þ

In this work the regression model is a second-order

polynomial model of the form:

y ¼ b0 þ
Xp
i¼1

bixi þ
Xp
i¼1

Xp
j¼1

bijxixj ð5Þ

3.1.2. Kriging model (KRG)

These models suggest estimating deterministic

functions as:

y xj
� �

¼ l þ e xj
� �

ð6Þ

where y is the function to be modeled, l is the mean

of the population, and e is the error with zero expected
value, and with a correlation structure that is a

function of a generalized distance among the design

values. In this work we use a correlation structure

(Sacks et al., 1989) given by:

cov e xið Þ; e xj
� �� �

¼ r2exp �
Xp
h¼1

hh xhi � xhj

� �2! 
ð7Þ

where p denotes the number of dimensions in the set

of design variables x; r, identifies the standard

deviation of the population, and, hh is a parameter

which is a measure of the degree of correlation among

the data along the h direction.

Specifically, given a set of n input/output pairs

(x, y), the parameters, l, r, and h are estimated such

that the likelihood function is maximized (Sacks et al.,

1989). The model estimates for a new set of design

values is given by:

ȳy xð Þ ¼ l̄l þ rTR�1 y� Ll̄lð Þ ð8Þ

where the line above the letters denotes estimates, r

identifies the correlation vector between the new set

of design values and the points used to construct the

model, R is the correlation matrix among the n sample

points, and L denotes an n-vector of ones.
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The estimation variance is given by:

V ȳy xð Þð Þ ¼ r2 1� rTR�1r þ
1� LTR�1r
� �

LTR�1L

�	
ð9Þ

3.1.3. Radial basis functions (RBF)

This method uses linear combinations of m radially

symmetric functions h(x), to approximate response

functions as,

yi ¼
Xm
i¼1

wihi xð Þ þ ei ð10Þ

where w are the coefficients of the linear combina-

tions, h is the radial basis functions and ei is

independent errors with equal variance, r2. Radial

basis functions are a special class of functions. Their

main feature is that their response decreases (or

increases) monotonically with distance from a central

point. The center, the distance scale, and the precise

shape of the radial function are parameters of the

model.

A typical radial function is the Gaussian which, in

the case of a scalar input is,

h xð Þ ¼ exp � x� cð Þ2

r2

! 
ð11Þ

its parameters are its center c and its standard

deviation (radius) r. The response of the Gaussian

RBF decreases monotonically with the distance from

the center, giving a significant response only in the

center neighborhood.

An RBF model can be expressed as,

y ¼ Hwþ e V eÞ ¼ r2
�

ð12Þ

where H is the design matrix given by,

H ¼

h1 x1ð Þ h2 x1ð Þ : : : hm x1ð Þ
h1 x2ð Þ h2 x2ð Þ : : : hm x2ð Þ

v v O v
h1 xnð Þ h2 xnð Þ : : : hm xnð Þ

3
775

2
664 ð13Þ

The optimal weights for the linear model specified

in Eq. (12) are estimated using least squares as,

ŵw ¼ A�1HTy ð14Þ
where A�1 is the variance matrix given by,

A�1 ¼ HTH
� ��1 ð15Þ

The variance estimator r2 of the error is approxi-

mated as,

r̂r2 ¼ yTP2Y

trace Pð Þ ð16Þ

where P is the projection matrix,

P ¼ I�HA�1HT ð17Þ

The model estimates for a new set of design values

is given by,

ŷy xð Þ ¼ zTŵw ð18Þ

where z is a column vector with the radial basis

functions evaluations,

z ¼

h1 xð Þ
h2 xð Þ
v

hk xð Þ

9>>=
>>;

8>><
>>: ð19Þ

and the estimation variance is the variance of the

prediction zTŵ plus the error variance:

V yð Þ ¼ V zTŵw
� �

þ V eð Þ

¼ zT HTH
� ��1

zþ 1
� � yTPy

p� m
ð20Þ

The Radial Basis Function approach was imple-

mented using the Matlab functions provided by Orr

(1999).

3.1.4. Weighted average model (WAV)

This model suggests to estimate deterministic

functions as:

yWAV xð Þ ¼
Xk
i¼1

ai xð Þysurr i xð Þ ð21Þ

where yWAV is the weighted average model, ysurr i is

the prediction corresponding to surrogate model i, ai
the weight of the surrogate i, and k the number of

surrogates. Note the adaptive nature of the model

since the weights are a function of x.



Fig. 4. Initial reservoir pressure distribution.

Table 2

Design variable restrictions

Design variable Range Units

Min Max

Alkaline concentration

(Na2CO3)

0 0.5898 meq/ml

Surfactant concentration 0.001815 0.005 vol. fract.

Polymer concentration 0.0487 0.12 wt.%

Injection time 111 326 days
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Assuming unbiased and independent predictions,

the unbiased weighted average model has minimal

variance when the weights are determined as follows,

ai ¼

1

V ið ÞXk
j¼i

1

V jð Þ

ð22Þ

where V(i) is the prediction variance of the i

surrogates. In this case the individual surrogates are

PRG, KRG and RBF (k =3). Details of the WAV

approach can be found in Bishop (1995).
4. Case study

As previously stated the problem of interest is to

find the values of a set of design variables, namely,

concentration of alkaline, surfactant and polymer, and

ASP slug size (expressed in the form of injection

time) that maximize the cumulative oil production of a

heterogeneous and multiphase petroleum reservoir.

The ranges of the design variables are presented in
Fig. 5. Initial water saturation field.
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Fig. 3. Well pattern illustration.
Table 2. The cumulative oil production is calculated at

487 days.

As illustrated in Fig. 3, the ASP flooding pilot has

an inverted five-spot pattern and a total of 13 vertical

wells, 9 producers and 4 injectors. The reservoir is at a

depth of 4150 ft, has an average initial pressure of

1770 psi, and the porosity is assumed to be constant

throughout the reservoir and equal to 0.3. The

numerical grid is composed of 19�19�3 blocks in

the x, y and z directions, respectively. Figs. 4–6 show

the initial reservoir pressure, initial water saturation

and horizontal permeability fields, respectively. The

OOIP is 395,427 bbl, the crude oil viscosity is 40 cP,

the initial brine salinity is 0.0583 meq/ml and the

initial brine divalent cation concentration is 0.0025



Fig. 6. Horizontal permeability field.
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meq/ml. A summary of the reservoir and fluid

properties is presented in Table 3. The injection

scheme is described in Table 4. This reference

configuration is available as sample data files of the

UTCHEM program.

Three flowing phases and eleven components are

considered in the numerical simulations. The phases

are water, oil and microemulsion, while the compo-

nents are water, oil, surfactant, polymer, chloride

anions, divalent cations (Ca2+, Mg2+), carbonate,

sodium, hydrogen ion, and oil acid. The ASP

interactions are modeled using the reactions: in situ

generated surfactant, precipitation and dissolution of

minerals, cation exchange with clay and micelle, and

chemical adsorption. Note the detailed chemical

reaction modeling, and heterogeneous and multiphase

petroleum reservoir under consideration.

Two alternative optimization problems are posed

(Scenarios I and II) differing in the size of the

available data set for the construction of the surro-

gates. In Scenario I the sample includes 64 input/

output pairs obtained through a Latin Hypercube

experimental design while in Scenario II the sample in
Table 3

Reservoir and fluid properties

Property Value Unit

Reservoir depth 4150 (1265) ft (m)

OOIP 395,427 (62,868) bbl (m3)

Oil viscosity 40 cP

Porosity 0.3 fraction

Average initial pressure 1770 psi

Well ratio 0.49 (15) ft (m)

Skin factor 0.0 adim

Water salinity CNa 0.0583 meq/ml

CCa 0.0025 meq/ml
Scenario I was increased to 88 input/output pairs by

incorporating the vertices and the center of the faces

of the hypercube formed by the design variable

bounds.
5. Results and discussion

Among these input/output pairs considered in

Scenarios I and II, the maximum, average, and

minimum values for cumulative oil recovery are

33.58% OOIP (132,784 bbl), 24.27% OOIP (95,970

bbl), and 18.06% OOIP (71,414 bbl), respectively.

Note that the performance of the ASP flooding is

significantly affected by the design variable values, so

their optimal specification is a critical issue.

5.1. Scenario I

Table 5 presents the optimal values for the design

variables obtained through the coupled execution of

DIRECT and each of the surrogate models. For each

of these sets of values numerical simulations were

conducted to assess its true performance. For the

optimal values suggested by the KRG and WAV

models the cumulative oil recovery was greater than

those obtained within the sample, meanwhile the

optimal values corresponding to the PRG and RBF

models are less than the maximum of the sample.

The optimization with the KRG model resulted in

the greatest objective function, that is, 34.86% OOIP

(137,846 bbl), a 3.81% improvement over the

maximum value of the sample. This point has

maximum values of polymer concentration. The

optimal solution obtained with the WAV model is



Table 4

Injection scheme

Slug Inj. time

(days)

PV Component concentration

Cw
a Csurf

a Cpol
b CCl

c CCa
c CMg

c CCO3

c CNa
c CH+

c

Polymer preflush 26 0.05 1.0 0 0.0974 0.015667 0.0019 0.004774 0.009122 0.01461 111.0034

AS preflush 25 0.1 0.99574 0.00426 0 0.07168 0.0034 0.0067 0.3339 0.52517 111.0767

ASP slug 715 0.41 0.99637 0.00363 0.0974 0.04948 0.0067 0.00831 0.3351 0.3929 111.839

Polymer drive 50 0.5 1.0 0 0.05 0.03586 0.00665 0.00132 0.0164 0.09 111.0034

Postflush 275 1.0 1.0 0 0 0.0135 0.00185 0.004774 0.008 0.0146 111.0034

a Conc. unit=vol. fract.
b Conc. unit=wt.%.
c Conc. unit=meq/ml.
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approximately equal to that of the KRG model. This

may be explained by the fact that the KRG prediction

variance was found to be significantly lower than for

the other approaches so its relative contribution to the

WAV model was the highest.

The lowest optimal value corresponded to the PRG

model, where in spite of the maximum values of

polymer concentration and injection time, the effect of

lower surfactant and alkali concentrations has the

impact of a lower cumulative oil recovery. The optimal

value suggested by the RBF model was negatively

affected by a lower polymer concentration in the ASP

solution. The results with these models (PRG and RBF)

underline the importance of injecting enough surfactant

and alkali in order to attain a reduction in interfacial

tension to mobilize oil drops, and enough polymer to

attain a proper mobility ratio to significantly improve

the volumetric swept efficiency.

5.2. Scenario II

Table 6 presents the optimal values for the design

variables obtained through the coupled execution of

DIRECT and each of the surrogate models. For each

of these sets of values numerical simulations were
Table 5

Optimization results (Scenario I)

Model Surrogate-based optimal solution

CNa

(meq/ml)

Csurf

(vol. fract.)

Cpol

(wt.%)

Polynomial regression 0.1611 0.0018 0.1200

Kriging 0.2898 0.0029 0.1200

Radial basis functions 0.2994 0.0030 0.0931

Weighted average model 0.2866 0.0025 0.1181
conducted to assess its true performance. Except for

the RBF model, the optimal values suggested by the

surrogates for cumulative oil recovery were greater

than those obtained within the sample.

The optimization using the PRG model resulted in

the greatest objective function value (best solution

found), that is, 35.69% OOIP (141,128 bbl); a 6.28%

improvement over the maximum value of the sample.

This point has maximum values of surfactant and

polymer concentration and injection time. On the

other hand, the interior solution obtained suggested by

the WAV model represents a 1.77% reduction with

respect to the best solution found, but with a 48% and

13.19% reduction in surfactant concentration and

injection time values, respectively, which would result

in lower costs. The optimal solution found using the

KRG model has an objective function value lower

than those suggested by the PRG and WAV models.

Within the context of the case study, increasing the

original data set (Scenario II) did not qualitatively

altered the location of the optimal solution in the

design space; however, cumulative oil recovery in

Scenario II is 0.57% higher than the best solution in

Scenario I, and 4.22% higher than the best solution

within the data set.
Objective function (COP %OOIP)

Injection

time (days)

Surrogates UTCHEM

326 34.31 (135,671 bbl) 31.02 (122,661 bbl)

280 35.61 (140,812 bbl) 34.86 (137,846 bbl)

292 36.71 (145,161 bbl) 32.31 (127,762 bbl)

282 35.10 (138,795 bbl) 34.81 (137,648 bbl)



Table 6

Optimization results (Scenario II)

Model Surrogate-based optimal solution Objective function (COP %OOIP)

CNa

(meq/ml)

Csurf

(vol. fract.)

Cpol

(wt.%)

Injection

time (days)

Surrogates UTCHEM

Polynomial regression 0.3057 0.0050 0.1200 326 32.17 (127,209 bbl) 35.69 (141,128 bbl)

Kriging 0.3167 0.0044 0.1200 283 36.43 (144,054 bbl) 34.73 (137,332)

Radial basis functions 0.2828 0.0030 0.0922 288 36.45 (144,133 bbl) 31.84 (125,904 bbl)

Weighted average model 0.2900 0.0026 0.1200 283 35.04 (138,558 bbl) 35.06 (138,637 bbl)
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As expected, in both scenarios the WAV model

presents the smallest difference between the surrogate

estimations for optimal cumulative oil recovery and

the corresponding values obtained using UTCHEM.

This confirms the expected better modeling capabil-

ities of the WAV model (through variance reduction)

with respect to the individual surrogates (Bishop,

1995).

Note that the use of multiple surrogates have

helped identify alternative optimal solutions corre-

sponding to different regions in the design space,

providing greater flexibility to match the designer

preference structure.

Within the context of the case study, the proposed

methodology showed to be effective and efficient

(requires a relatively low number of field scale

numerical simulations), can benefit from the increas-

ing availability of parallel computing environments,

and holds promise to be useful in more general

scenarios of ASP flooding optimization.
6. Conclusions
! An optimization methodology of ASP flooding

processes has been proposed. The methodology

involves the coupled execution of a global

optimization algorithm and fast surrogates (i.e.,

based on Polynomial Regression, Kriging, Radial

Basis Functions, and a Weighted Average Model)

constructed from field scale numerical simulation

data. The global optimization program implements

the DIRECT algorithm and the reservoir numerical

simulations are conducted using UTCHEM from

the University of Texas at Austin.

! For the set of optimal values suggested by most of

the surrogates the cumulative oil recovery was

greater than those obtained within the sample, and
over a 30% greater than the mean value of the

sample.

! The optimal values suggested by the PRG and

RBF models in Scenario I showed the importance

of injecting enough surfactant and alkali in order to

attain a reduction in interfacial tension to mobilize

oil drops, and enough polymer to attain a proper

mobility hence increasing the volumetric swept

efficiency. Note that the use of multiple surrogates

have helped identify alternative optimal solutions

corresponding to different regions in the design

space.

! The WAV model presents the smallest difference

between the surrogate estimations for optimal

cumulative oil recovery and the corresponding

values obtained using UTCHEM. This confirms

the better modeling capabilities of the WAV model

(through variance reduction) with respect to the

individual surrogates.

! The proposed methodology showed to be effective

and efficient (requires a relatively low number of

field scale numerical simulations) within the

context of the case study, can benefit from the

increasing availability of parallel computing envi-

ronments, and holds promise to be useful in more

general scenarios of ASP flooding optimization.

Nomenclature

a weights of the WAV model

b̂ estimated parameters

e error

l mean of the population

h correlation parameter

r standard deviation

f objective function

I identity matrix

k number of surrogates

KRG Kriging model
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L n-vector of ones

p number of variables

r correlation vector

R correlation matrix

PRG Polynomial regression model

V variance

x the design variables

X constraints set

WAV Weighted average model

y function of interest

z prediction variables

Z matrix of the prediction variables

Subscripts

surr surrogate model
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