
1 
American Institute of Aeronautics and Astronautics 

 

Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 
Portsmouth, Virginia, 6-8 September, U.S.A. 

 

Assessing the Value of Another Cycle in Surrogate-Based 
Optimization 

 
Nestor V. Queipo∗, Alexander Verde†, and Salvador Pintos‡ 
Applied Computing Institute, University of Zulia, Venezuela. 

{nqueipo, averde, spintos} @ ica.luz.ve 
 

and 
 

Raphael T. Haftka§ 
Aerospace and Mechanical Engineering, University of Florida, USA 

haftka @ ufl.edu 
 
Surrogate-based optimization (SBO) for engineering design has become popular in the 

optimization of engineering systems (e.g., aerospace, automotive, oil industries) requiring 
expensive computer simulations. SBO proceed in design cycles, each cycle consisting of 
gathering input/output data using computer simulations, construction of a surrogate based 
on these data, estimation of the optimum using the surrogate, and a simulation at that 
optimum (PBS). However, due to time and cost constraints, the design optimization is limited 
to a small number of cycles (short cycle SBO) and rarely allowed to proceed to convergence. 
The current frontier of surrogate-based engineering design lacks statistically rigorous 
procedures for assessing the merit of investing in another cycle of analysis versus accepting 
the PBS. 

This paper presents a methodology to address this issue. The proposed methodology 
establishes an estimate of the probability of improving a specified target if another cycle 
(with a given set of points) is undertaken. It relies on three components:  i) a covariance 
model (structure and parameters) obtained from available input/output data, ii) a surrogate 
model such as those provided by polynomial regression, kriging, and support vector 
regression, and iii) the assumption that the points in the next cycle are a realization of a 
Gaussian process with a covariance matrix and mean specified using i) and ii). Gaussian 
processes are frequently used for problems of regression and classification and are closely 
related to a variety of surrogate modeling approaches including neural networks, kriging, 
and generalized radial basis functions. In this study, a particular form of kriging is used to 
evaluate the proposed methodology considering that capturing a covariance model is at the 
core of this surrogate modeling approach. Validation results obtained using elements of 
statistical inference in the context of the SBO of the Branin-Hoo test function, and its 
application in the optimization of alkali-surfactant-polymer flooding of petroleum reservoirs 
is also discussed.  

 
 

Nomenclature 
α = statistical significance level  
B = statistic - number of prediction points with function values below the target 
B = random variable - number of prediction points with function values below the target 

Cov = covariance function 
E = expected value 
Ho = null hypothesis 
N = multivariate normal distribution 

ZtZpN |
 = normal conditional probability distribution of Zp given Zt 

pi = probability of improvement corresponding to prediction point i 
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kpb  = probability of obtaining k prediction points with function values below target 
PBS = present best solution 

R = correlation function 
SD = standard deviation 
T = target 
V = variance 
x = model input 

pZ  = prediction data set 

tZ  = training data set 

µ = mean vector 
σz = scale factor 
θ  = correlation parameters 

 
 

I. Introduction 
Surrogate based optimization (SBO) of computationally demanding simulation-based models has become 

very popular over the last decade1-3. A typical SBO constructs the surrogate based on a number of simulations, 
estimates the optimum design based on the surrogate, and then performs an exact simulation at that estimated 
position (checking phase). This constitutes one cycle. The process is then repeated until resources run out or 
convergence is established. There has been much progress recently in developing SBO methods with proven 
convergence4,5, and in the SBO under uncertainty for robust design and reliability-based design optimization as 
evidenced in the DAKOTA and i-SIGHT optimization frameworks6-9. However, in many applications, time and 
resources limit the approach to a small number of cycles10,11.  

The current frontier of surrogate-based engineering design lacks statistically rigorous procedures for 
assessing the merit of investing in another cycle of analysis versus accepting the present best solution (PBS). 
More precisely, the designer faces a question whose answer has received limited attention: what is the 
probability that the present best solution (PBS) can be improved at least a certain amount? There is available, 
however, the Gaussian processes (GP) perspective to surrogate modeling which has a long history in the field of 
statistics and will prove to be useful in this context. Just as a Gaussian distribution is specified by its mean and a 
covariance matrix, a Gaussian process is specified by a mean and a covariance model; here, the mean is a 
function of the location in the model input space, and the covariance is a function expressing how correlated the  
model output values are at two locations. GP are frequently used for problems of regression (e.g., kriging) and 
classification and are closely related to a variety of surrogate modeling approaches including neural networks12, 
kriging13,14, generalized radial basis functions15, and kernel methods16. Rasmussen17 conducted a comparison of 
GP regression with several other state of the art methods on a number of problems and, in general, found its 
performance comparable or superior to most methods. A more recent comparison of GP modeling versus the 
response surface method is available in Hollingsworth and Mavris18. 

This paper presents a methodology to address the problem of interest which relies on three components:  i) a 
covariance model (structure and parameters) obtained from available input/output data, ii) a surrogate model 
such as those provided by polynomial regression, Kriging, and support vector regression, and iii) the assumption 
that the points in the next cycle are a realization of a Gaussian distribution with a covariance matrix and mean 
specified using i) and ii). The methodology is validated (through elements of statistical inference) using a well-
known analytical test function (i.e., Branin and Hoo), and evaluated in the surrogate-based modeling of a field 
scale alkali-surfactant-polymer (ASP) enhanced oil recovery (EOR) process. ASP flooding is the most promising 
EOR solution for one of the greatest challenges facing the oil industry worldwide: after conventional water 
flooding the residual oil (drops trapped by capillary forces) in reservoirs around the world is likely to be around 
70 % of the original oil in place19,20.  

The remainder of the paper is structured as follows: problem statement (Section II), solution approach 
(Section III), case studies (Section IV), results, and discussion (Section V), and conclusions (Section VI). 
  

II. Problem Statement 
In the context of surrogate-based optimization, given a surrogate model (built from a set of training points) and a 
sample of prediction locations, what is the probability of improving a particular target  at one or more of the 
prediction locations if another cycle is undertaken?. As an illustration of the problem of interest, Fig. 1 shows a 
kriging-based model of the Branin and Hoo test function, a set of prediction points, the present best solution-
PBS, and a target-T.   
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Under a GP perspective13,21,22, the problem of interest can be mathematically formulated as follows. 
Considering, the vectors tZ , and pZ  denote training and prediction data (output) sets, respectively, the points 
in the next cycle in surrogate-based optimization can be seen as  a realization of the following Gaussian 
distribution23 (with a mean value equal to zero for the tZ output data )¶:  

 { }∑ ∑ ∑ ∑ ∑ ∑− −
−

pt tt pp pt tt tptZtZp ZN 1 1
| ,  (1) 

where ZtZpN |  is a multivariate normal distribution representing the conditional probability distribution of  pZ  

given tZ  and the matrices denoted by Σ specify the variances and covariances of the components in vectors pZ  

and tZ . Note that the terms in brackets represent the mean of the prediction at the prediction locations and the 
conditional covariance matrix of Zp given Zt, respectively. The components in the variance and covariance 
matrices (denoted by Σ) can be calculated by identifying a covariance function Cov(z, z); the general form of the 
covariance function expresses the idea that nearby inputs will have highly correlated outputs and some 
parameters allow a different distance measure for each input dimension.   
 
In this context, the problem of interest is then to calculate the probability that a target T can be met or 
surpassed by at least one of the components of pZ  given a set of training points in tZ .  
   

III. Solution Approach 
Given the previously cited GP perspective, the solution approach relies on three components: i) a covariance 

model (structure and parameters) obtained from available input/output data (this issue is discussed at the end of 
this section), ii) a surrogate model such as those provided by polynomial regression, kriging, and support vector 
regression, and iii) the assumption that the points in the next cycle are a realization of a Gaussian process (GP) 
with a covariance matrix and mean specified using i) and ii). Once the Gaussian process is specified (i.e., 
through its mean and covariance matrix), the probability of interest can be calculated as:   

 ( ) ( )tptpj ZWZobZTZleastatob >−=< Pr1Pr  (2) 

                                                
¶ The expression for a non-zero mean just would involve a little extra complexity 

Prediction locations

PBS

T < PBS

Prediction locations

PBS

T < PBS
 

Figure 1. A Kriging-based model of the Branin-Hoo function with a set of five (5) 
prediction locations where the probability of improving a specified target is sought. 
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where W is a vector with dimension equal to the number of prediction points and with all its values equal to the 
target T, that is, [ ] tTTTW ..= . 
  Furthermore, a GP is a stochastic process for which any finite set of outputs (e.g., predictions) has a joint 
multivariate Gaussian distribution. Hence, considering the symmetry of the multivariate Gaussian density 
function with respect to its mean value µ (Fig. 2), we can write:  

 ( ) ( )tptp ZWZobZWZob −≤=> µ2PrPr  (3) 

This transformation is required because we can compute the right hand side of the previous equation using 
well known algorithms for evaluating Gaussian cumulative probability distributions in high dimensions24.   
 

 
 

More precisely, the solution approach includes the following steps: 
 
1. Construct vector tZ  from the available data. It includes the output values in the data used to construct the 

current surrogate model.  
2. Identify a covariance model for the output values in the training ( tZ ) and prediction pZ  sets. This issue 

will be fully discussed later in this section.  
3. Using the covariance model identified in Step 2, calculate the covariance matrices denoted as:  

∑∑∑∑ pppttptt
,,,  

4. Compute the conditional covariance matrix of Zp given Zt , that is: 

 tpttptpptpp Z ∑⋅∑⋅∑−∑=Σ −1  (4) 

5. Create a mean vector µ equal to the surrogate model predictions at the prediction points; for example, in the 
case of kriging (assuming a trend equal to zero) the mean vector can be expressed as:  

 ∑ ∑−
⋅⋅=

pt tt tZ1
µ  (5) 

In other modeling approaches (polynomial regression, support vector regression, etc.) the mean at any prediction 
point would be the surrogate modeling prediction at that location.   

 
6. Establish a desired target T whose probability of improving in the next cycle is sought and construct a vector 

W of dimension equal to the number of prediction points and components with values equal to T 

µ

t = 2µ−w

w

( )ZtWZpob >Pr

( )ZtWZpob −≤ µ2Pr

Symmetry

Zp1

Zp2

µ

t = 2µ−w

w

( )ZtWZpob >Pr

( )ZtWZpob −≤ µ2Pr

Symmetry

Zp1

Zp2

 
Figure 2. An illustration of how to estimate Prob (Zp>W|Zt) in Eq. (2) 

using  multivariate  normal cumulative distributions. 
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7. Compute the symmetric vector s with respect to W as: 

 2s Wµ= −  (6) 

8. Compute the value of the multivariate normal cumulative distribution function-CDF corresponding to vector 
s, namely:  ( )tp ZsZob |Pr ≤  

9. Calculate the probability of interest as:   

 ( ) ( )tptpj ZsZobZTZleastatob |Pr1|Pr ≤−=<  (7) 

A. Covariance Model Identification 
Identification in this context means to establish the structure and parameters of the covariance function. The 

covariance function C(z, z´)  is a function of the model inputs (x, x )́, returns the covariance of the outputs 
corresponding to two inputs, and it encodes our assumptions about the problem (for example, that is smooth and 
continuous). Formally, we are required to specify a function which will generate a non-negative definite 
covariance matrix for any set of input points. From a modeling point of view, we wish to specify covariance 
models with a structure that contain our previous beliefs about the function we are modeling. The general form 
of the covariance function expresses the idea that nearby inputs will have highly correlated outputs with some 
parameters (θ) allowing a different distance measure for each input dimension.   

A frequent assumption in the context of surrogate modeling using GP is to have the covariance function to be 
stationary; that is, Cov(z, z )́  is a function of  x-x´; if additionally, Cov only depends on the magnitude of the 
distance between x and x´ then the covariance function is said to be isotropic. The use of stationary covariance 
functions is appealing since it makes the prediction invariant under shifts of the origin in the input space, and 
greatly simplifies the covariance model identification. One commonly used covariance function for inputs in Rn 
is: 

 ( )xxRzz z ′⋅=′ ,,),cov( 2 θσ  (8) 

where 2
zσ  is a scale factor and ),,( xxR ′θ  is a correlation function: 

 ( )∏
=

′−=′
n

j
jjj xxRxxR

1

,),,( θθ  (9) 

This is simply the product of n correlation functions with a set of parameters θ. Table 1 shows commonly 
used correlation functions; note that the correlation function does not have to be ¨Gaussian¨ and that the 
parameters model different length scales in each dimension.   

 
 

 
 
Once the covariance function structure has been set, the parameters can be estimated using the training data. 

There are several approaches for achieving this purpose: i) maximum likelihood estimates-MLE25, ii) cross 
validation (CV), and general cross validation (GCV) methods, as discussed in Wahba26, and iii) through 
variogram modeling13. In particular, the MLE approach consists of maximizing the log likelihood of the training 
vector Zt under a Gaussian process with known mean and covariance matrix calculated using a previously 
specified covariance function. Given the likelihood and its derivatives with respect to the parameters θ, the 

Table 1 – Commonly used correlation functions 

Name ( )jj xxR ′−,θ  

Exponential ( )jjj xx ′−⋅−θexp  

Gaussian ( )2
exp jjj xx ′−⋅−θ  

Exponential - Gaussian ( )1exp +′−⋅− n

jjj xx
θ

θ ,     20 1 ≤< +nθ  
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maximum of the likelihood can be estimated using standard optimization routines. The evaluation of the 
likelihood and its partial derivatives takes time O(n3) unless a special structure in the problem can be exploited 
and can be a difficult problem in high dimensions; approximate methods such as that proposed by Vecchia27 
have been shown to be useful in such scenarios. A more robust approach for covariance function identification 
can be made through the so called variogram modeling process from geostatistics. This approach has been 
limited to low dimensional problems, and extensions to high dimensional problems are not obvious. In any 
event, there is empirical evidence that even somewhat crude MLEs can lead to useful predictions and 
quantifications of uncertainty21. 
  

IV. Case Studies 
This section describes the evaluation approach, and the analytical (Branin and Hoo function28) and the 

industrial (Alkali-Surfactant-Polymer enhanced oil recovery optimization11) case studies used to test the 
proposed solution methodology.  
 
A. Validation Approach 

The validation approach is limited to a particular case of the proposed solution methodology (uncorrelated 
prediction points), and will include as modeling approach ordinary kriging13. It includes the following steps: 

1. Given a set of N (prediction) locations where the probabilities of improvement ip ´s over a specified 
target T can be calculated, evaluate the computationally expensive model and check at each location 
whether an improvement  was observed (success=1) or not (failure=0). This will be called an 
experiment. 
 
The ip ´s  can be computed since a prediction under the GP approach is also normally distributed with 
mean, and variance (i.e., Σpp|Zt) as specified in steps 5, and 4 of the solution approach, respectively. 
Note that for calculating each of the ip ´s step 4 is conducted one prediction point at a time.  Fig. 3 
illustrates this calculation.  
 
 

 
 
 

2. Define a random variable B equal to the number of prediction points with function values below the 
target, and recognize that, assuming independence, this variable should follow a generalized binomial 

distribution (GBD) with expected value ∑
=

=
n

i
ipBE

1

)(  and variance )1.()(
1

i

n

i
i ppBV −= ∑

=

. Note 

that this is just the well-known binomial distribution but with variable probabilities for the trials. 
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Figure 3. Illustration of the probability of improvement. 



7 
American Institute of Aeronautics and Astronautics 

 

3. Compute a statistic b equal to the number of prediction points with function values below the target for 
a particular experiment. 

4. Conduct a hypothesis test (statistical inference) using as null hypothesis oH  that B actually follows a 
GBD with E(B) and V(B) as specified in step 2, and compute the p-value associated with the statistic b 
calculated in step 3. In this context the p-value of B is the probability that B will assume a value “at 
least as extreme” as an observed value b given that the null hypothesis is true. If the p-value is high 
(e.g., greater than 0.05) the null hypothesis can not be rejected and hence the approach can be 
considered statistically consistent. Figure 4 illustrates the p-value calculation. The calculation procedure 
differs depending on whether the statistic b is lower (Eq. 11) or higher (Eq. 12) than E(B) 
 
Case b<E(B) 

 ∑
=

⋅=−
b

k
kpbvaluep

0
2  (11) 

Case b>E(B) 

 






 −⋅=− ∑
−

=

1

0

12
b

k
kpbvaluep  (12) 

where 1
max

0

=∑
=

b

k
kpb , and kpb is the probability of obtaining k prediction points with function values below 

target. 
 

As previously stated, the probabilities of improvement at each of the test locations are calculated assuming 
independence and a normal distribution with mean equal to the surrogate model prediction and an estimated 
variance (analytical). In the case of kriging, empirical estimates of these variances are also considered. The 
analytical variance neglects the fact that the kriging correlation parameters are estimated from a sample and there 
is uncertainty about their values. As discussed by den Hertog29, the analytical variance underestimates the true 
one, and more accurate estimates can be obtained through parametric bootstrapping30. The kriging modeling was 
conducted using the Matlab toolbox developed  by Lophaven et al.31; in particular, it was implemented ordinary 
kriging with a Gaussian correlation function and parameters identified using maximum likelihood principles. 

 

 
 

In each of the following case studies, after the above cited evaluation is conducted on the analytical test 
function (Branin and Hoo), the results of the proposed solution methodology for the more general scenario of 
correlated prediction points will be calculated.  
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Figure 4. An illustration of the p-value calculation. Two different 
scenarios are presented b<E(B) and b>E(B). The pb ’s are also shown. 
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B. Branin and Hoo Test Function 
This test function is expressed as: 

 ( ) ( ) 10cos
8
111065

4
1.5,

2

2

2

+





 −+








++−= xxxyyxf

πππ
 (13) 

Input space range:  x є [-5, 10] &   y є [0, 15] 
 

The statistic b will be calculated using ten (10) different Latin hypercube designs with sixteen (16) training 
points, and five (5) prediction points. The target is made equal to the present best solution in each training set, 
minus ten (10) percent of the segment between the present best solution and the global optimum of the function 
(0.3978).   
 
C. Alkali-Surfactant-Polymer (ASP) Optimization 

The problem of interest is to find the values of the design variables, namely, concentration of alkaline, 
surfactant and polymer, and ASP slug size (expressed in the form of the injection time) that maximize the 
cumulative oil production. The ranges of the design variables are presented in Table 2. The cumulative oil 
production is calculated at 487 days expressed as percentage of the original oil in place (OOIP).  

 
 

 
 
As illustrated in Fig. 5, the ASP flooding pilot has an inverted five-spot pattern and a total of 13 vertical 

wells, 9 producers and 4 injectors. The reservoir is at a depth of 4150 ft., has an average initial pressure of 1770 
psi, and the porosity is assumed to be constant throughout the reservoir and equal to 0.3. The numerical grid is 
composed of 19x19x3 blocks in the x, y and z directions. The OOIP is 395,427 bbls, the crude oil viscosity is 40 
cp, the initial brine salinity is 0.0583 meq/ml and the initial brine divalent cation concentration is 0.0025 
meq/ml. This is the reference configuration whose details can be found in the sample data archives of the 
UTCHEM program. 

 
 

 

Table 2 – Design variable restrictions- ASP optimization 
Range Design variable Min. Max. Units 

Alkaline Concentration (Na2CO3)  0 0.5898 meq/ml 
Surfactant Concentration 0.001815 0.01 Vol. fract. 
Polymer Concentration 0.0487 0.1461 wt% 
Injection time 111 326 days 
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Figure 5. Well pattern illustration (ASP modeling case study). 
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Three flowing phases and eleven components are considered in the numerical simulations. The phases are 
water, oil and microemulsion, while the components are water, oil, surfactant, polymer, chloride anions, divalent 
cations (Ca++, Mg++), carbonate, sodium, hydrogen ion, and oil acid. The ASP interactions are modeled using 
the reactions: in situ generated surfactant, precipitation and dissolution of minerals, cation exchange with clay 
and micelle, and chemical adsorption. Note the detailed chemical reaction modeling, and the heterogeneous and 
multiphase petroleum reservoir under consideration.     
 

The statistic b will be calculated using one (1) Latin hypercube design with forty one (41) training points, and 
five (5) sets of prediction points with ten (10) points each. The target is made equal to the best solution in the 
training set (30.13%).   
  
 

V. Results and Discussion 
A. Branin & Hoo Case Study 

Table 4 shows the estimated kriging parameters for the evaluated configurations, namely, the mean μ and the 
correlation parameters.  

 
 

 
 
Table 5 shows the probabilities of improvement over the target for each of the ten (10) configurations 

assuming the test points correlated, and uncorrelated (independent) using both analytical and empirical 
prediction variance estimates. An illustration of the probabilities of improvement is shown in Fig. 6. In general, 
when the output values at the prediction locations were assumed to be independent, the probabilities of 
improvement were found to be smaller when the analytical variances were used. When the correlation between 
the output values at the prediction locations were accounted for the probabilities of improvement were even 
smaller. 
 

 
 

Table 4 – Estimated kriging parameters for the evaluated 
configurations (Branin & Hoo case study) 

Config. θ1 θ2 µ σ2 x 103 
1 0.0386 1.0865 74.4185 2.5067 
2 0.0245 0.0234 76.2245 8.0430 
3 0.0232 0.0184 109.6764 6.0829 
4 0.0388 0.0146 74.0953 3.0256 
5 0.0554 0.0086 82.5646 4.9569 
6 0.0003 5.1336 53.5383 4.1119 
7 0.0203 0.0357 64.8435 4.0426 
8 0.0536 0.0122 43.6384 1.5753 
9 0.0438 0.0041 151.6764 13.070 

10 0.0376 0.0043 155.5163 15.472 
 

Table 5 - Probability of improvement for the evaluated 
configurations (Branin & Hoo case study) 

Config. Independent 
(empirical) 

Independent 
(analytical) Dependent 

1 0.5575 0.4821 0.4541 
2 0.5003 0.4514 0.3546 
3 0.9737 0.9933 0.9927 
4 0.3956 0.3663 0.3248 
5 0.5208 0.5272 0.4859 
6 0.8038 0.6809 0.6576 
7 0.0889 0.0722 0.0727 
8 0.5697 0.5965 0.5673 
9 0.9064 0.9807 0.9694 

10 0.4707 0.3945 0.3158 
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Table 6 shows for each of the configurations, the target, the statistic b (i.e., the number of prediction points 
below the target), the expected value of B, its standard deviation, and p-values, considering both analytical and 
empirical prediction variance estimates. Note the high p-values obtained for all the configurations, which shows 
that the computed probabilities of improvement are consistent with the experimental results. Furthermore, while 
the sample of configurations is not big enough to make a definite statement, the average probability of 
improvement is in excellent agreement with the observed results (i.e., 5 out of 10 configurations have prediction 
points below the target). 

 
 

 
 
B. Alkali-Surfactant-Polymer (ASP) Modeling 

Table 7 shows the estimated kriging parameters for the evaluated configurations, namely, the mean μ and the 
correlation parameters. 
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Figure 6 -   Probability of improvement for the evaluated configurations 

(Branin & Hoo case study) 

Table 6 – p-values comparison for the evaluated configurations  
(Branin & Hoo case study) 

Config. T b Ea  –  Ee SDa  –  SDe p-valuea  –  p-valuee 
1 7.0366 2 0.5997 -   0.7334 0.7123  -  0.7763 0.2161 -   0.3102 
2 2.5250 0 0.4992 -  0.5700 0.6031 -  0.6330 1.0  -  1.0 
3 1.0355 0 0.9930  -  0.9769 0.0919  -  0.1842 0.0155 -  0.0576 
4 1.7308 1 0.3257 -  0.3631 0.4686  -  0.4809 0.6514  -  0.7261 
5 2.6180 0 0.4985  -  0.4988 0.5000 -   0.5000 1.0  -  1.0 
6 0.9219 0 0.9797  -  1.3628 0.8650  -  0.9875 0.6532  -  0.4009 
7 2.6751 1 0.0698  -  0.0863 0.2548  -  0.2807 0.1396  -  0.1725 
8 0.4168 0 0.5649  -  0.5531 0.4966  -  0.5076 0.8711 -  0.9044 
9 11.8487 2 1.4585  -  1.2922 0.5528  -  0.6499 0.9743  -  0.8000 
10 15.3256 1 0.4050  -  0.5013 0.5676  -  0.6133 0.7288  -  0.8767 

Table 7 – Estimated kriging parameters for the evaluated configurations  
(ASP case study) 

Config. θ1 θ2 θ3 θ4 µ σ2 
1 3.5691x105 0.9562 x105 0.00016 x10-4 0.9572x10-4 22.278 18.020 
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Table 8 shows the probabilities of improvement for each of the five (5) configurations assuming the test 
points correlated, and uncorrelated (independent) using both analytical and empirical prediction variance 
estimates. The probabilities of improvement over the target followed the same trends observed in the analytical 
case study. 

 

 
Table 9 shows for each of the configurations, the target, the statistic b (the number of prediction points below 

the target), the expected value of B, standard deviation, and p-values, considering both analytical and empirical 
prediction variance estimates. Note the high p-values obtained for all the configurations, which shows that the 
computed probabilities of improvement are again consistent with the experimental results. An illustration of the 
p-values for each of the configurations is shown in Fig. 5. 

 
 

 
 

 

 
 

VI. Summary and Conclusions 
 

• This paper presented an approach based on the Gaussian process perspective for assessing the merit of 
investing in another cycle of analysis (probability of improvement) versus accepting the present best 
solution (PBS).  The Gaussian processes (GP) perspective to surrogate modeling has a long history in 
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Figure 9 - p-values comparison for the evaluated configurations (ASP case study) 

Table 9 - p-values comparison for the evaluated configurations  
(ASP case study) 

Config. b Ea  –  Ee SDa  –  SDe p-valuea  –  p-valuee 
1 0 0.728 – 1.065 0.716 – 1.065 0.839 – 0.527 
2 1 0.031 – 0.676 0.174 – 0.743 0.06 – 1.0 
3 1 0.105 – 0.637 0.311 – 0.694 0.20 – 1.0 
4 0 0.337 – 1.047 0.501 – 0.901 1.0 – 0.60 
5 0 0.054 – 0.566 0.229 – 0.701 1.0 – 1.0 

 

Table 8 - Probability of improvement for the evaluated 
configurations (ASP case study) 

Config. Independent 
(empirical) 

Independent 
(analytical) Dependent 

1 0.7365 0.5806 0.5800 
2 0.5279 0.0308 0.0303 
3 0.5200 0.1044 0.1027 
4 0.6971 0.3251 0.3248 
5 0.4554 0.0532 0.0523 
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the field of statistics, are frequently used for problems of regression (e.g., kriging) and classification and 
are closely related to a variety of surrogate modeling approaches including neural networks, kriging, 
generalized radial basis functions, and kernel methods.  

• The proposed approach relies on three components:  i) a covariance model (structure and parameters) 
obtained from available input/output data, ii) a surrogate model such as those provided by polynomial 
regression, kriging, and support vector regression, and iii) the assumption that the points in the next 
cycle are a realization of a Gaussian process with a covariance matrix and mean specified using i) and 
ii). 

• Using ordinary kriging as modeling approach, considering estimates of both analytical and empirical 
variances, the proposed approach gave results statistically consistent when applied to an analytical case 
study (Branin-Hoo) and to the surrogate-based optimization of an Alkali-Surfactant-Polymer process, 
and holds promise to be effective in broader contexts. 

• Current work focuses on evaluating the proposed approach using popular alternative surrogate 
modeling schemes such as polynomial regression, and support vector regression, and, on developing 
strategies for setting reasonable targets in another cycle in surrogate-based optimization, by using, for 
example, concepts from extreme value theory from statistics. 
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