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Abstract— This paper presents a general approach toward the
optimal selection and ensemble iweighted average) of surrogates
(kernel-based approximations) to address the issue of model
uncertainty (model selection ); that is, depending on the problem
under consideration and loss function (i, guadratic, Laplace,
c-imsensitive) a particolar modeling scheme (eg., palynomiol
regresdon, splines, Gavssiun radial basis functions, er Kriging)
may cutperform the ofthers, and In gpeneral, it s ool known
4 priori which sne should be selecled. The surrogates for the
ensemble are chosen bused an their performance favoring non-
dominted models, while the welghts are adaptive and inversely
proportional fa estimates of the local prediciion variance of
the individoal surrogates. Using both, well-known smaly tical
test functions, aoad, in the surrogate-based modeling of a field
scale alkali-surfactant-polymer (ASFY enbanced oll recovery
process, the ensemble af surragates, in general, sutperformed
{ie, mean error, stondord deviation, and maximum absolute
errar) the best individusl surrogate and provided amoeng the
hest prédictions througheut the damuins of interest,

I. INTRODUCTION

The surmgate-based modeling approach is increasingly
popular and has been shown o be useful in the analysis and
optimizstion of computationully expensive simulation-hased
models in, for cxample, the scrospace [1]-]4), automotive
[5]. 16}, and ofl industries [7]. (8], Swrogme-based modeling
makes reference to the wea of constructing an aliernatve Tast
model (surmogated from numencal simulation data and using
it for analvsis and optimization purposes. However, practi-
noners stll have to deal with the issue of model uncertainty
imodel selection) where depending on the problem under
consideration and loss function {i.¢. quadratic, Laplace, -
imsensitive), o particulsr modeling scherme (e.g., polymnomil
regression, Linear splines, Gaussian radial basi= functions, or
Knging) may cutperform the others, and in general, it is not
known a prion which one should be selectad (9], [10], While
there are significant efforts 10 wddiress (he above refercnoed
issle. practitioners are sill looking for guidelinegs on how to
optimally perform model selechion,

On the other hand, kernel-based methods [11], [12] pro-
vide the fMexibility of generating models under alternative
lozs fumctions and, in particular, suppor vector regression
(SVER) developed by Vapnik and co-workers [13] at AT&ET
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Labs in the mid 90s, 15 a rapidly developing held of research,
already giving state of the an performances in a vanety of
apphcations, which provides a powerful altermibve W con-
duct swmogate-based analysis and optimization, The power
of SVR resides in several fronts, such as: 1) robusiess and
sparseness of the solution: the goodness of it i measured
oot by the wsual quadratic loss function (mean sguare emor)
but by a different [oss function («-insensitive) similar to those
uied m robust statistics (e, o way of dealimg with deviations
from idealized assumptions], and a i) Nexible and mathemast-
wcully sound approach; non-linear regression models (e.g.,
polynomials, Gaussian radial basis Tunctions, splines, etc.}
can be constructed as linear ones by mapping the inpul
data into o so-called feature space (RKHS-reproducing kernel
Hilbent space) |14]. The linear models (a single framework)
are formulated in rerms of dof products inoa feature space
which can be officiemly calcolated using special functions
(kernels) associated with the non-linear regression models of
interest, evolusted] in the original spoce (kernel trick). This
framework can also be used with guadratic loss functions
which makes it an ideal setting for multuple-sumogate based
analysis and oplimation.

Previous cfforts i the area of model selection have fo-
cused on cither: i) select a particular surrogate from a set of
candidates using, for example, Akmke mformabon critenon
(AIC) [15], Bavesian information criterion (BI1C) [16]. [17]
of crogs validation methods, or, novel techniques based on
learning theoretic performance bounds, such as the structural
risk minimization method | 18], [19], or, 1) bnld an ensemble
of the available surrogates (weighted average) with weights
caleabuted based on global [20]-[23] (e.g.. AIC, BIC, MSE)
or local [24] performance measures, The ensemble of -
gites approach accounts for model uncertainty, and there is
evidence that it can provide better average predictive ahility
than using any single model (e.gz. [23]). while the variam
of computing the weights wsing local performance mensures
(prediction varisnee) consider the foct tho surmogates rank
differenily throughout the inpui space, Zerpa et al. [24] vsed
analytical prediction vanance (known to underestimate the
troge valugs) as local performance measures, but did not
provide a soategy to select surrogates to build the ensemble,
orl was hmited 10 o quadratic [oss function.

This paper provides a general approach wwward the optimal
selecuon and ensemble (weighted average) of kemel-based
models under allernative loss functions, with weights based
on empincally estimated prediction vanances and evalu-
ote s performance using both, well-known analytical test
functions, and, in the surrogate-hased modehng of a feld



scale alkali-surfactant-palymer (ASP) enhanced oil recovery
(EOR) process. ASP flooding is the most promising EOR
solution for one of the greatest challenges facing the ol
ndusiry worldwide: after convenfional water Aooding the
resitual ail (drops trapped by capillary forces) in reservoirs
around the world 15 [kely (o be around T % ol the orginal
oil in place [26], [27].

I, PROBLEM DEFISNITION

Given a training sample £ = ((r, 9,011 <= n)of
function y = f(z) defined in D C f®, and & kemelbased
surmrogate models ML, 1 < & < & constructed from sample
E, sclect a et of m surmogate models and build a weighted
average model:

Wavglz) = E;i, ()M, (2)
=Ll
such that the weighted average model cutperform as many
individunl surmogmies as possible. In the equation above
Ajlx) represents the weight of model Af(x) ot location
x and the performance measures (global and local) are:

5 i =
mean ahsolule ermor E*"nlﬂ:* ‘n“. standard  devi-

: ,"': o we—M [y )} B
ation ﬁ"‘-ﬂu. and maximom  abzolute error
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I, SOLUTION METHODOLOGY

I includes the Tollovwing steps:

I'v For cach of the case studics, a Latin hypercube sample
(sparse) from the model inpat space s drawn and the
cormesponding model outpuis are caleulated.

23 The model inpet and outpol values are normaliced (o
the scale [~1,1]

1) For each of the models a set of parameters are spec-
ihied, mamely, € (regularation parmmeter), © (size of
nsensitive rone), for SYR models, the wudth & for
Gaussian and the degree p ool the polynomsal kemel
(e next seotion for detifs) The parameters were
specificd using cross validation (k-Told strategy) such
that they minimuze the mean absolute value of the
errors. Specifically, after dividing the data into n/k
clusters, each fold 1= constructed using an element from
cuch of the clusters so it 5 a representabive sample of
the model of interest,

4) A model that do nol dominate (lowest absolute error)
the others in one or more of the traming locations i<
discarded, unless it is one of the best three models
based on the mean absolute eror criterion. Using this
procedure, the subset of models (m) 0 be pant of the
ensemble for prediction is created.

5) Using the subsets of models specified in the previous
step, o weighied average model o constructed. The
adaptive weights 3, (x) are invérsely proporiogal to an
estimation of the prediction vanance o3 () of M, at
pount &, The prediction varance For each of the niodél s
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is estimated empincally using o nearest neighbors of
point x, Speciically,

i 1 ;
ajfx) = = E[H{“} - M;(a))*

where &y, 53,..,5, are the o nearcst aeighbors of
point r whose corresponding model outputs  are
l# y wrl#2 )t 8 ). The weight for model M, is then
piven as:

BT

Bz} = =

isle=1 alir)
IV, KERNEL-BASED REGRESSION

The kernel-hased regression models A'S con be Sien s
solutions of the following variationu) problem:

. .l ]
min Z(M) = - Zl Lig = M (=)} + A M5,

over some large space of functions H;, where [oand A
denote o particular boss function (¢.g. quadmtic, Laplice,
e-insensitive and Huber loss funcoons) and a regularization
parnmeter. respectively. The second werm penalizes hy pothe-
sis that are too complex.

If we restnict ourselves to Reproducing Kemel Hilbert
Spaccs (RKHS) the vanational problem can be formulated
as stated in Equation (1)

1 :
i Z(M) = ~ g Liw=(M K ))+ MMM (1)
It can be shown that mdependently of the form of the oss
function, the solotion of the vanational problem (Eguation
(1)) can be expressed as:

L.
Miz) = Zn,;il:':..l:,] £2)
=T
where k represemts a kernel function. Table | shows the kemel
function associated with a wvanety of surrogale mndeling
schemes.

I particular, if the los function is quidratic the coefli-
cients in Equation (2} con be found by solving the following
linar system:

(nAf 4+ K, = @i



TABLE Il

SURRCGGATE MODELS UNDER CONSIDERATION (LCASE STULHES)
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where K denotes the so called Gram matny with component
Ny denoting fir,.x;), and { representing the identity
matnx. Altematively, if the «-ansensitive loss function is
usedd, the coefficients in Equation (2) are found by solving a
guatileatic programming problem., See Schig iknpl' and Sk
[28], and Pogpio amd Smales [29] for details.

V., CASE STUDIES
A. General considerations

The solation methodology 15 evaluated using two well-
knowen | 10] lest fancticns €F, amd F3) and a modelng
problem in the arca of enhanced oil recovery. Teble 1
shows the models under consideravion (quadrate and -
insensitive loss functions, snd polynomisl, Ciaussisn redial
basis functons, splines amnd B-splines), Third and second
arder polynomialks, and thind degres splines were considered.
The kernel-based regression problems were solved using the
Mutlab Support Vector Machines (SVM) wolbox [33]. The
¢ and O values under consideration were U, (105, 0.1 and
0.5C 0, 0760, 1 !IIH_"I...I|I 1.6 Cns rl..-l.i_'u.!'l;“'l:l.'\n.-l."|:|.I the h
valoes were sei equal (o 100k, mnd 06504, with £,
and f,p meference values as proposed by Cherkossky amd
Ma |31} The paramectcr values were selecied using cross
validation (k-fold) using twenry 20 teaining points mesh with
k= 0 for the analytical west cascs (Scction V=B, and sixny
foirr (64) training point: w o Liin hypercube sample with
k= B for the ASP madeling (Secoon V-C) case study
The weights in all cases were calculated using three ()
neiphhors, The test datn sets were o mesh of 10 = 10 points
for the analytical test cases and cight (8) selected points for
the ASP modeling case study.

B. Amalvtical test functions

I'he analytical test Functions (F, and F5) with the corre-
sponding domaun of interest are shown m Eqostions (3) and
{4} The functions are shown in Figures | and 2 and Table 111
display their maln characreristics, namely, thedr dimengion,
the x and ¥ location at which the minimuim occurs, and range.
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C. Alkali-surfacranr-polaner (ASF) modeling

Previous works toward the modeling and optimization of
ASP procesies have concentrated mainly around (dentitying
formulanians that will achieve minkmom interfacial tension
using laborutory experiments and empirical correlations |32]-
[35], and cencitivity analyses using oumerical somulation o
core und fickl scale levels [36)-[410]. See derpa of al [24]
for details, Formal ASF flooding analvsis and optimization
effons have been very limiled mainky due to the high
computational cost exhibited by the numerical simulatons
at the reservoir level, which makes impractical the coupled

TADLE 111
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Fig 3. BReferesce configurtion (ASF modeling case siudy)

TABLE IV
IMPLIT VARIARLE BESTRICTIOMS { ASP SODELING CASE STUDY |

.
||||lu| witiwihile ! h’ﬁ.l‘l H.:.I_ Eloiins
Alkalie Coacentrisnm (NalC T} [ EELTT mnapril
Surfnsian Cossesswtiom DoAY L) ol oot
Folymes Concemimanmn [TCTH i w1
 Tnction time__ i 75 iy

exection of e simolator and aptimization algonthms.

The design of an ASE (looding process miusl achicve three
main vhjectives: propagation of the chemicals in an active
meede, the injection of éenough chemicals accounting for the
retention, nml a complete swept of the aen of inerest [27],
Achicving these ohjectives 15 sgnificantly affecied by the
selection of the chemicals, the concentration of the ASF
solution and the slug size, among other faciors.

The ASP enhanced o1l recovery modeling problem ad-
dressed here is 1o build o suprogate model of & computation-
ally expensive numerical simulatar, that will take as input:
concentranon of alkaline, surfactam and polymer, and ASF
slup size (expressed in the form of the injection time), and
as outpur the cumulative oil production. The ranges of the
imput varishles are presenied in Table |V, The comulabive ol
producion s calculated at 487 davs. As illustrated in Fig,
3, the ASP flooding pilot has an mverted five-spot pattem
and & total of 13 verteal wells, @ producers and 4 injectors.
The reservoir is ot a depth of 4130 ft., has an average
imitial pressure of 1770 pa, and the porosity is assumed to
be canstant throughowt the reservoir and equal 1o 003, The
numecrical grid 5 composed of 19x19x%3 blocks in the x, y
and 2 directions. The OOIP is 395427 bbls, the crude ofl
viscosity i 40 cp, the initial brine salinity is 0.0583 meg/m]
smed the imtial bone divalent cation concentration 15 U025
meqiml.

A sumimary of the reservoir and Huid propemies is pre-
sented in the Table V. The injection scheme and other ref-
erence configuration details can be found 1w the sample data
fles of the UTCHEM program [41], Three Nowing phases
and cleven components are considered w the nomerical

TABLE ¥
HESERVOLR & ND FLUTD FROPERTIES (ASP MODELING CASE STUDY )

Fmperiy Nalx Unit
Reservour depth 4150 [§265) it im)
~ aolk 395427 (62 Rl | Bblsien
Rl viscosity 40 op
Parosily [1K] fracticn
Averape Initial Presmare KKl =i
Well atia .49 (5] ft im)
Ekan fuctn oA andim
[ Water salimity | CHa | EOEET | megiml
[ O [ s mecml
TABLE V1

SELECTED SURRDGATE MODELS (Case stuor - Fy & Fu)
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simulations, The phases are water, oil and nucroemulsion,
while the components are water, oil, surfactant, poalymer,
chloride anions, divalent cotions (Cal+, Mg2+), carbanate,
sodium, hydrogen ion, and ol acid. The ASP interactions
re modeled using the reactions: in sitw generated surfactant,
precipitation amd dissolution of mincrald, cation exchange
with clay amd micelle, and chemical adsorption. Note the
detailed chemical resction modeling, and the heteropensous
aned multiphase petroleum reservour under consideration,

¥1. RESULTS AND DISCUSSION

Tuble VI shows the selected models (step & the solution
methodology ) among those in consideration in the case study
comespondmg (o the analvtical ted) funetions Fy v Fo.. With
reference w function 7, Figere 4 illustrates the modcl that
provides the best prediction throughout different regions of
the input space; note that no individual model ostperfonm
the others. In a real setfing, at & partseular Jocation il is no
known in advance which individual model will prevail, so
an averape model that weights the influence of mdividual
models based on local measures of their error can he 2 maore
robist alternative than using any single mosde],

Table W1 shows the performance of the individeal models
and the W, on the test data sel. Fipure 5 shows a box-plol
with the empirical distribution of the absolute value of the
crrors m the test data set for all models under conside ration
The W,y omperformed M. Mz, and My and have a similar
performance than Ay for all error messures (ie., mean
absolure error, standard devistion, and maximum absolute
ermon}. Specifically, the 1, model ouperformed the mean
value of the emror measures of A, Ay My, and A, by at
least 23%, 19%, and 0%, respectively.

With reference o function £, the W, owperformed the
ndividual models under all performance measures, specif-
ically, it pave ar least 61%, 4%, and T2% lower values
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of mean abselute emor, standard deviation, and maximum
absolute ermor, tespectively, than the mean valee of the emor
mieasures of all the individiual models, ond represents o 33%,
35%. and 15% improvement in the mean absolute errar,
standard deviation, amd maximwim absoluie error, with respect
ton the comresponding ermor measure in the best individual
model, Figure 6 shows the empirical dismbuation of the
absolute value of the errors in the test data set.

Tahle VI presents for test functions y and 55, the rank
of the Irl.",,,,,,:II model in estimating the function values for
the test daty set In general, the Wi, provides among the
hest predictions and as previously stated represents a nobust
estimator,

Table [X shows the selected madels for the ASP madeling
case sty and their relative performance. The W, model
outperformed the individual models under all error méasures;
specificully, it provided 58, 35%, and 57% lower values

TABLE ¥l
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than the mean of the crror measares of all individual models,
respectively, than the mesn response of all models under
consideration, and represents o 41%. 53%, and 22% im-
pEovement in the mean absolute ereor, standard deviation, and
maximum absolute error, with respect to the corresponding
crror measure associaled with the best individual model.

VIl ConcLUsionNs

= This paper presented a genceal approach toward the opti-
mal selection and cosemble (weighted average) of surro-
gates (kernel-based approximations) (o address the issue
of model uncertainty (model seleetion). The surmogates

TABLE IX
SURROCATE MODELS PERFORMANCE [ ASP MODELTNG CASESTUDY)

Bedel B el Loss fenchien | dm std | max
iy Ciaopsion | eemsensitive | 60 | 275 | Yol
My | Comsan | Guadnic | 245 | 506 | 094

My | Spline i-nsensitive | TH6 | 271 | E1%

Warg s | 128 | rar




far the ensemble are chosen based on their performance
favoring pom-dominated models, while the weighis are
adaptive and inversely proportional to estimates of the
local prediction variance of the individual suriogates.

o The proposed approach wis evaluated using well-
known analytical test functions (F, Fh) oand,
the surrogate-based modeling of o held scale alkah-
surfactant-pal vimer { ASF ) enhanced oil recovery process
comsidermg an imtial sct of eight (8) surrogate models
which were the result of quadratic and c-insensitive
Inss functions ond kemels for polynomial regression,
cubic splines, cubic B-splines and Ganssian radial hasis
fumcrians.

o The surrogate selection strategy led o four (4) and
three (3) surrogate ensembles, for the analytical, and
ASF modeling case studies, and it was shown that. in
gemeral, the best prediction throughou: the inpur space
15 given by different surrogates, ond, the weighted av-
erage mode] (ensemble) outperfprmed (i, mean ermor,
stindiord diewsatzon, and misximum absolute ermord 1) the
comesponding mean value of the individusl surrogates
(Fy: 23%, 19%, and 6% Fa: 61%, 64%, and 72%:
ASP moedeling: 58%, 55%. and 57%) and, i} the best
midividoal surrogates (F5: 33%, 35%, and |5%; ASP
madeling: 41%. 53%, amd 22%), In additon, the en-
sermible prediction typically ranked among the best when
compared o those priovided by the individunl models.

» The proposed ensemble approach showed 1o be effective
within the context of both analytical and cagineonng
case studies and holds promise to be useful in more
general engineening analysis and aptimication scenanos,
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