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Abstract

After conventional waterflooding processes the residual oil in the reservoir remains as a discontinuous phase in the form of oil
drops trapped by capillary forces and is likely to be around 70% of the original oil in place (OOIP). The EOR method so-called
Alkaline–Surfactant–Polymer (ASP) flooding has been proved to be effective in reducing the oil residual saturation in laboratory
experiments and field projects through reduction of interfacial tension and mobility ratio between oil and water phases.

A critical step for the optimal design and control of ASP recovery processes is to find the relative contributions of design
variables such as, slug size and chemical concentrations, in the variability of given performance measures (e.g., net present value,
cumulative oil recovery), considering a heterogeneous and multiphase petroleum reservoir (sensitivity analysis).

Previously reported works using reservoir numerical simulation have been limited to local sensitivity analyses because a global
sensitivity analysis may require hundreds or even thousands of computationally expensive evaluations (field scale numerical
simulations). To overcome this issue, a surrogate-based approach is suggested.

Surrogate-based analysis/optimization makes reference to the idea of constructing an alternative fast model (surrogate) from
numerical simulation data and using it for analysis/optimization purposes. This paper presents an efficient global sensitivity
approach based on Sobol's method and multiple surrogates (i.e., Polynomial Regression, Kriging, Radial Base Functions and a
Weighed Adaptive Model), with the multiple surrogates used to address the uncertainty in the analysis derived from plausible
alternative surrogate-modeling schemes.

The proposed approach was evaluated in the context of the global sensitivity analysis of a field scale Alkali–Surfactant–
Polymer flooding process. The design variables and the performance measure in the ASP process were selected as slug size/
concentration of chemical agents, and cumulative oil recovery, respectively. The results show the effectiveness and efficiency of the
proposed approach since it allows establishing the relative contribution of the design variables (main factors and interactions) to the
performance measure variability using a limited number of computationally expensive reservoir simulations.
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1. Introduction

After conventional waterflooding processes the re-
sidual oil in the reservoir remains as a discontinuous phase
in the form of oil drops trapped by capillary forces and is
likely to be around 70% of the original oil in place —
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OOIP (Dosher and Wise, 1976). The EOR method so-
called Alkaline–Surfactant–Polymer (ASP) flooding
has been proved to be effective in reducing the oil
residual saturation in laboratory experiments and field
projects through reduction of interfacial tension and
mobility ratio between oil and water phases (Clark et al.,
1988; Meyers et al., 1992; Vargo et al., 1999; Demin
et al., 1999).

A critical step for the optimal design and control of
ASP recovery processes is to find the relative contribu-
tions of design variables (global sensitivity analysis)
such as, slug size and chemical concentrations, in the
variability of given performance measures (e.g., net
present value, cumulative oil recovery), considering a
heterogeneous and multiphase petroleum reservoir.
Global sensitivity analysis (Saltelli and Tarantola, 2002
and references therein) allows addressing settings such as:

• What are the main effects (model output vs. input
variables)?

• Can we safely fix one or more of the input variables
without significantly affecting the output variability
(screening)?

• How can we rank a set of input variables according to
their contribution to the output variability (variables
prioritization)?

• If we could eliminate the uncertainty of one or
more of the input variables which ones should be
chosen (variable selection for maximum uncertainty
reduction)?

• If and which (group of) parameters interact with each
other (parameter interactions)?

• What are the main regions of interest in the parameter
space if additional samples become available?

• Does the model reproduce well known behavior of
the process of interest (model validation)?

Previously reported works using reservoir numerical
simulation have been limited to local sensitivity an-
alyses (Wu, 1996; Zhijian et al., 1998; Manrique et al.,
2000; Qi et al., 2000; Hernández et al., 2001)
and global but discrete analyses —factorial designs
(Delshad et al., 2005). The latter approach given its
discrete nature may hide the true nature of the process
behavior or may require an unaffordable amount of
experiments. While the ideal approach is a continuous
global sensitivity analysis, it would require hundreds or
even thousands of computationally expensive evalua-
tions (field scale numerical simulations). To overcome
this issue, a surrogate-based approach is suggested.
Surrogate-based analysis/optimization makes reference
to the idea of constructing an alternative fast model
(surrogate) from numerical simulation data and using it
for analysis/optimization purposes. This approach has
been successful in the analysis/optimization of compu-
tationally expensive simulation-based models in the
aerospace (Giunta et al., 1997; Balabanov et al., 1998),
automotive (Craig et al., 2002; Kurtaran et al., 2002)
and oil industries (Queipo et al., 2002a,b). Li and
Padula (2004) and Queipo et al. (2005) recently re-
viewed different surrogate models used in the aerospace
industry.

On the other hand, comparative studies have shown
that depending on the problem under consideration a
particular modeling scheme may outperform the others,
and in general, it is not known a priori which one should
be selected (Simpson et al., 2001; Jin et al., 2001). This
paper presents an efficient global sensitivity approach
based on Sobol's method (Sobol, 1993) and multiple
surrogates (i.e., Polynomial Regression, Kriging, Radial
Base Functions and a Weighed Adaptive Model) with
the multiple surrogates used to address the uncertainty in
the analysis derived from plausible alternative surro-
gate-modeling schemes (Zerpa et al., 2005; Sanchez
et al., 2006; Goel et al., in press). The proposed
approach is evaluated using a field scale Alkali–
Surfactant–Polymer flooding process (modeled with
the UTCHEM reservoir numerical simulator) with
design variables and performance measure selected as
slug size/concentration of chemical agents, and cumu-
lative oil recovery, respectively.

The UTCHEM is a three-dimensional, multiphase,
multicomponent reservoir simulator of chemical flood-
ing processes developed at the University of Texas at
Austin (Pope and Nelson, 1978; Camilleri et al., 1987;
Bhuyan et al., 1990). The basic governing differential
equations consist of: a mass conservation equation
for each component, an overall mass conservation
equation that determines the pressure (the pressure
equation), an energy balance, and Darcy's Law
generalized for multiphase flow. The resulting flow
equations are solved using a block-centered finite-
difference scheme. The solution method is implicit in
pressure and explicit in concentration, similar to the
well known IMPES method used in blackoil reservoir
simulators. A Jacobi conjugate gradient method is
used to solve the system of finite-difference equa-
tions resulted from the discretization of the pressure
equation.

2. Problem of interest

While a global sensitivity analysis allows addressing
the issues posed in the introduction, in this paper we
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focus on answering the following questions in the con-
text of oil recovery processes:

• Can we safely fix one or more of the input variables
without significantly affecting the output variability
(screening)?

• How can we rank a set of input variables according to
their contribution to the output variability (variables
prioritization)?

• If we could eliminate the uncertainty of one or
more of the input variables which ones should be
chosen (variable selection for maximum uncertainty
reduction)?

• If and which (group of) parameters interact with each
other (parameter interactions)?

More precisely, given an ASP flooding oil recovery
process, having design variables such as, chemical
concentrations of alkali, surfactant, and polymer, and
slug size, what are the most important variables and
interactions?

It will be shown (Section 3.1) that all these questions
can be answered by solving the following problem:
Given a function f (x) of vector of design variables x of
size Ndv, find its decomposition as the sum of terms of
increasing dimensionality as:

f ðxÞ ¼ f0 þ
X
i

fiðxiÞ þ
X
ibj

fijðxi; xjÞ þ N

þ f12 N Kðx1; x2; N ; xKÞ
ð1Þ

with,

Z 1

0
fil N isdxk ¼ 0 ð2Þ

k= i1, …, is, where 1≤ i1b…b is≤Ndv,
3. Solution methodology

With reference to Fig. 1, the proposed methodology
involves the following steps:

1. Generate a sample of the design variables space using
a modified Latin hypercube experimental design.
This sampling procedure has been shown to be very
effective for selecting values of input variables for
the analysis of the output of a computer code (McKay
et al., 1979).

2. Conduct numerical simulations (via UTCHEM)
using the sample (input) from the previous step and
obtain the corresponding objective function values
(output).

3. Using the input/output pairs obtained in the previous
step construct multiple surrogate models based on
Polynomial Regression, Kriging, Radial Basis Func-
tions and aWeighted Adaptive Model. This surrogate
models will be discussed later in this section.

4. With the surrogate models constructed, conduct a
global sensitivity analysis using Sobol's method to
calculate the global and total sensitivity indices for
each of the design variables. These sensitivity indices
will allow the ranking of design variables in order of
importance.

3.1. Global sensitivity analysis

To understand the concept, assume a surrogate model
of a square integrable function, f (x), as a function of a
vector of design variables, x, whose values have been
scaled between zero and one (this assumes that the
design domain is box-like). This surrogate model can be
decomposed as the sum of functions of increasing
dimensionality as:

f ðxÞ ¼ f0 þ
X
i

fiðxiÞ þ
X
ib j

fijðxi; xjÞ þ N

þ f12 N Kðx1; x2; N ; xKÞ
ð3Þ

If the following conditionZ 1

0
fi1 N isdxk ¼ 0 ð4Þ

is imposed for k= i1, …, is, where 1≤ i1b…b is≤Ndv, the
decomposition described in Eq. (3) is unique and each
term in the sum can be obtained by computing the
following integrals:Z

f ðxÞjdxk ¼ f0 ð5Þ
Z

f ðxÞj
kpi

dxk ¼ f0 þ fiðxiÞ ð6Þ

from which fi(xi) can be found, andZ
f ðxÞ j

k pi; j
dxk ¼ f0 þ fiðxiÞ þ fjðxjÞ þ fi; jðxi; xjÞ ð7Þ

from which fi,j(xi, xj) can be obtained. The higher
dimensional summands are similarly found except for
the last one that is calculated using Eq. (3). Furthermore,
ensured by the condition expressed in Eq. (4), the sum-
mands are orthogonal.



Table 1
Design variable restrictions

Design variable Range Units

Min Max

Alkaline concentration
(Na2CO3)

0 0.5898 (meq/ml)

Surfactant concentration 0.001815 0.005 (Vol. fract.)
Polymer concentration 0.0487 0.12 (wt.%)
Slug size 111 326 (days)

Fig. 1. Architecture of the proposed methodology.
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Therefore the partial variances, that is, the contribu-
tion of each of the summands to the total variance ob-
served in the response, can be shown to be:

Di1 N is ¼
Z

f 2i1 N isdxi1 N dxis ð8Þ

with the total variance being equal to:

D ¼
Z

f 2ðxÞdx−f 20 ð9Þ

which can also be expressed as,

D ¼
Xp
s¼1

Xp
i1

:
b N bis

Di1 N is ð10Þ

since the functions have been shown to be orthogonal.
Each partial variance gives a measure of the contri-

bution of each independent variable or set of variables to
the total variance, and provides an indication of their
relative importance. Note that all the required integra-
tions are conducted on the surrogate (fast) model and
can in principle be calculated accurately provided an
integration numerical procedure is available (e.g.,
Gaussian quadrature).

The relative importance of a design variable is quan-
tified by a set of indices, namely, individual (Si) and total
(Si

total) sensitivity indices. The former refer to the frac-
tion of the total variance contributed by a particular
variable in isolation, while the latter represents the
contribution (expressed as a fraction) of all the partial
variances in which the variable of interest is involved.
The individual sensitivity index Si represents the in-
fluence of a design variable xi to a function variability
without accounting for any of its interactions with other
variables and is given as:

Si ¼ Di=D ð11Þ
To calculate the total sensitivity index (Si
total) of a

design variable xi, the design variable vector x is di-
vided into two complementary subsets, xi and Z where
Z is a vector containing x1, x2, x3, …, xn (n≠ i). The
purpose of using these subsets is to isolate the influence
of xi on the f (x) variability from the influence of the
remaining design variables included in Z. The total
sensitivity index for xi can be calculated as:

Stotali ¼ Dtotal
i =D ð12Þ

and

D ¼ Dtotal
i þ Dz ð13Þ

where DZ is defined as the sum of partial variances of all
possible subsets variables in Z. The Di

total term is
calculated as D−DZ since DZ can be straightforwardly
calculated (Sobol, 1993).

Formulations of the Sobol´s method that account for
non-rectangular domains and correlated inputs are
available; see, for example, Jacque et al. (2004), and
Mack et al. (2005) for a recent application. A detailed
discussion of global sensitivity methods and applica-
tions can be found in Saltelli and Tarantola (2002), Frey
and Patil (2002) and the references therein.

3.2. Surrogate-modeling

It is an inverse problem where due to the limited
amount of available data: i) alternative surrogates can
provide reasonable approximations to function f, and ii)
each surrogate may offer the best fit to f depending on
the region of the design space. Since the contributions of
design variables to the variability of the objective func-
tion are unknown we suggest to use multiple surrogates
considering they can be constructed at no significant
additional computational cost. Three alternative surro-
gate models, namely, Polynomial Regression (PRG),
Kriging (KRG), and Radial Basis Functions (RBF) will
be considered. In addition, a Weighted Adaptive Model
(WAM) of these surrogates will also be included in the



Fig. 2. Well pattern illustration.
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study. The WAM can be shown to reduce the variance
estimation with respect to that of the individual surro-
gates (Bishop, 1995). Throughout this section, given the
stochastic nature of the surrogates, the available data is
considered a sample of a population.

3.2.1. Polynomial Regression model (PRG)
The regression analysis is a methodology that studies

the quantitative association between a function of inter-
est y, and m prediction variables z j, where there are n
values of the function of interest yi, for a set of predic-
tion variables zi

j (Draper and Smith, 1966). For each
observation i a linear equation is formulated:

yi ¼
Xm
i¼1

bjz
j
i þ ei EðeiÞ ¼ 0 V ðeiÞ ¼ r2 ð14Þ

where the errors εi are independents with expected value
equal to zero and variance σ2. The estimated parameters
β̂j (by least squares) are unbiased and have minimum
variance.

Eq. (1) is expressed in matrix form as:

y ¼ Zbþ e EðeÞ ¼ 0 V ðeÞ ¼ r2I ð15Þ

where Z is a n×m matrix with the prediction variable
values. The vector of the estimated parameters is:

b̂ ¼ ðZTZÞ−1ZTy ð16Þ
Considering a new set of design values z, the

variance of the predicted response zTβ̂ is:

V ðyðzÞÞ ¼ r2ðzT ðZTZÞ−1zþ 1Þ ð17Þ
In this work the regression model considered is a
second-order polynomial model of the form:

y ¼ b0 þ
Xp
i¼1

bixi þ
Xp
i¼1

Xp
j¼1

bijxixj ð18Þ

3.2.2. Kriging model (KRG)
These models suggest estimating deterministic func-

tions as:

yðxjÞ ¼ lþ eðxjÞ ð19Þ

where, y is the function to be modeled, μ is the mean of
the population, and ε is the error with zero expected
value, and with a correlation structure that is a function
of a generalized distance between the sets of design
values. In this work we use a correlation structure (Sacks
et al., 1989) given by:

covðeðxiÞ; eðxjÞÞ ¼ r2exp −
Xp
h¼1

hhðxhi −xhj Þ2
 !

ð20Þ

where, p denotes the number of dimensions in the set of
design variables x; σ, identifies the standard deviation
of the population, and, θh is a parameter which is a
measure of the degree of correlation among the data
along the h direction.

Specifically, given a set of n input/output pairs
(x, y), the parameters, μ, σ, and θ are estimated such
that the likelihood function is maximized (Sacks et al.,



Fig. 4. Initial water saturation field.
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1989). The model estimates for a new set of design
values is given by:

ȳðxÞ ¼ l̄ þ rTR−1ðy−Ll̄Þ ð21Þ
where the line above the letters denotes estimates, r
identifies the correlation vector between the new set of
design values and the points used to construct the
model, R is the correlation matrix among the n sample
points, and L denotes an n-vector of ones.

The estimation variance is given by:

V ðȳðxÞÞ ¼ r2 1−rTR−1r þ ð1−LTR−1rÞ
LTR−1L

� �
ð22Þ

3.2.3. Radial Basis Functions (RBF)
The radial basis functions have been developed for

the interpolation of scattered multivariate data. The
method uses linear combinations of m radially symmet-
ric functions, h(x), based on Euclidean distance or other
such metric, to approximate response functions as,

yi ¼
Xm
i¼1

wihiðxÞ þ ei ð23Þ

where w are the coefficients of the linear combinations,
h the radial basis functions and εi independent errors
with variance σ2.

The flexibility of the model, its ability to fit many
different functions, derives from the freedom to choose
different values for the weights. The radial basis func-
tions and any other parameter they might contain are
fixed.

Radial basis functions are a special class of functions.
Their main feature is that their response decreases (or
increases) monotonically with distance from a central
point. The centre, the distance scale, and the precise
shape of the radial function are parameters of the model.
Fig. 3. Initial reservoir pressure distribution.
A typical radial function is the Gaussian which, in the
case of a scalar input, is

hðxÞ ¼ exp −
ðx−cÞ2
r2

 !
ð24Þ

its parameters are its centre c and its radius r. The
response of the Gaussian RBF decreases monotonically
with the distance from the centre, giving a significant
response only in the center neighborhood.

A radial basis functions model can be expressed as,

y ¼ Hwþ e V ðeÞ ¼ r2 ð25Þ

where H is the design matrix given by,

H ¼
h1ðx1Þ h2ðx1Þ : : : hmðx1Þ
h1ðx2Þ h2ðx2Þ : : : hmðx2Þ

v v ⋱ v
h1ðxnÞ h2ðxnÞ : : : hmðxnÞ

2
664

3
775 ð26Þ

Similarly to the polynomial regression method, the
Eq. (25) is solved by least squares to obtain the optimal
weights,

ŵ ¼ A−1HTy ð27Þ
where A−1 is the variance matrix and is given by,

A−1 ¼ ðHTHÞ−1 ð28Þ
The variance estimator σ2 of the error is given by,

r̂2 ¼ yTP2Y
traceðPÞ ð29Þ

where P is the projection matrix,

P ¼ I−HA−1HT ð30Þ
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Table 2
Reservoir and fluid properties

Property Value Units

Reservoir depth 4150 (1265) ft (m)
OOIP 395,427 (62,868) bbls (m3)
Oil viscosity 40 (cp)
Porosity 0.3 (fraction)
Average initial pressure 1770 (psi)
Well radius 0.49 (0.15) ft (m)
Skin factor 0.0 (adim)
Water salinity CNa 0.0583 (meq/ml)

CCa 0.0025 (meq/ml)
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The model estimates for a new set of design values is
given by,

yðxÞ ¼ ZT ŵ ð31Þ
where, Z is a column vector with the radial basis func-
tions evaluations,

Z ¼
h1ðxÞ
h2ðxÞ
v

hcðxÞ

8>><
>>:

9>>=
>>; ð32Þ

and the estimation variance is the variance of the pre-
diction zTŵ plus the error variance:

V ðyÞ ¼ V ðZT ŵ ÞþV ðeÞ¼ðZT ðHTHÞ−1Zþ1Þ y
TPy
p−m

ð33Þ
3.2.4. Weighted adaptive model

This model suggests to estimate deterministic func-
tions as:

yWAMðxÞ ¼
Xk
i¼1

aiðxÞysurr iðxÞ ð34Þ

where yWAM is the weighted adaptive model, ysurr i is
the prediction of the surrogate model i, and αi the
Table 3
Injection scheme

Slug Injection
time
(days)

PV Component concentration

Cw1 Csurf1 Cpol2 C

Polymer preflush 26 0.05 1.0 0 0.0974 0
AS preflush 25 0.1 0.99574 0.00426 0 0
ASP slug 715 0.41 0.99637 0.00363 0.0974 0
Polymer drive 50 0.5 1.0 0 0.05 0
Postflush 275 1.0 1.0 0 0 0

1. Conc. unit = Vol. fract.
2. Conc. unit = wt.%.
3. Conc. unit = meq/ml.
weight of the surrogate i, and k the number of sur-
rogates. Note the adaptive nature of the model since the
weights are a function of x.

Assuming unbiased and independent predictions, the
unbiased weighted adaptive model has minimal variance
when the weights are determined as follows (Bishop,
1995),

ai ¼
1

V ðiÞPk
j¼i

1
V ð jÞ

ð35Þ

where V(i) is the prediction variance of the i surrogates.
In this case the individual surrogates are PRG, KRG and
RBF (k=3).

4. Case study: Alkaline–Surfactant–Polymer flooding
process

As previously stated the problem of interest is to find
the contribution of design variables such as alkali,
surfactant and polymer concentrations, and time of
injection, to the total variability of the response of an oil
recovery process by ASP injection. The ranges of the
design variables are presented in Table 1. The
cumulative oil production is calculated at 487 days.

As illustrated in Fig. 2, the ASP flooding pilot has an
inverted five-spot pattern and a total of 13 vertical wells,
9 producers and 4 injectors. The reservoir is at a depth of
4150 ft, has an average initial pressure of 1770 psi, and
the porosity is assumed to be constant throughout the
reservoir and equal to 0.3. The numerical grid is com-
posed of 19×19×3 blocks in the x, y and z directions.
Figs. 3, 4, and 5 show the initial reservoir pressure,
initial water saturation and horizontal permeability
fields, respectively. The OOIP is 395,427 bbls, the
crude oil viscosity is 40 cp, the initial brine salinity is
0.0583 meq/ml and the initial brine divalent cation
Cl
3 CCa

3 CMg
3 CCO3

3 CNa
3 CH+

3

.015667 0.0019 0.004774 0.009122 0.01461 111.0034

.07168 0.0034 0.0067 0.3339 0.52517 111.0767

.04948 0.0067 0.00831 0.3351 0.3929 111.839

.03586 0.00665 0.00132 0.0164 0.09 111.0034

.0135 0.00185 0.004774 0.008 0.0146 111.0034
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concentration is 0.0025 meq/ml. A summary of the
reservoir and fluid properties is presented in the Table 2.
The injection scheme is described in Table 3. This is the
reference configuration whose details can be found in
the sample data files of the UTCHEM program.

Three flowing phases and eleven components are
considered in the numerical simulations. The phases are
water, oil and microemulsion, while the components are
water, oil, surfactant, polymer, chloride anions, divalent
cations (Ca2+, Mg2+), carbonate, sodium, hydrogen ion,
and oil acid. The ASP interactions are modeled using the
reactions: in situ generated surfactant, precipitation and
dissolution of minerals, cation exchange with clay and
micelle, and chemical adsorption.

Note the detailed chemical reaction modeling, and
the heterogeneous and multiphase petroleum reservoir
Fig. 6. Global sensitivity indices, a) PRG, b) KRG,
under consideration. A typical run time for the numer-
ical simulations associated with the reference configu-
ration using UTCHEM is 853 s of CPU time in a PC
with an AMD Athlon 64 2.0 GHz Processor and
960 MB of RAM.

5. Results and discussion

After validating the implementation of the solution
methodology using the well known Lagendre poly-
nomials benchmark case (Archer et al., 1997), it is used
to solve the problem of interest as described in the case
study.

Fig. 6 shows the results of the global sensitivity
analysis for each of the surrogate models considered in
this work with the design variables denoted as x1:
c) RBF, d) WAM (ASP flooding case study).
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alkaline concentration, x2: surfactant concentration, x3:
polymer concentration and x4: slug size. The rank of the
individual indices (S3NS4NS1NS2) (for most surrogates
but RBF) indicates that polymer concentration (x3) has
the greatest individual sensitivity index, follow by the
slug size (x4) and alkaline concentration (x1), while the
surfactant concentration (x2) has a nearly insignificant
individual sensitivity index.

The RBF model was obtained using the Matlab
functions provided by Orr (1999), with general cross
validation for model selection. The RBF model obtained
has a number of centers almost equal to the number of
points and provided an overfitted approximation to the
function of interest. As a result, the RBF model exhib-
ited a high prediction variance, did not provide a good
approximation of the ASP flooding process, and had
little influence on the results corresponding to the WAM
model so it was not included in the rest of the analyses.
RBF, in general, though, can avoid overfitting problems
by using regularization methods in the modeling pro-
cess. Note that the multiple surrogates approach and
weighted average model for global sensitivity analyses
is not significantly influenced by modeling problems of
particular surrogates.

The most important interaction is that of alkaline and
surfactant concentrations (x1x2), with a much greater
contribution to the total variability than those of the
individual variables x1 and x2. While the polymer
Fig. 7. Individual and total sensitivity indices. a) PRG
concentration and slug size (x3x4) interaction can be
seen as significant its contribution to the total variability
is small compared to that of the individual variables (see
Fig. 7).

Fig. 8 shows the relative value of the total sensitivity
indices. The polymer concentration (x3) has the greatest
percentage contribution to the variability of the response
of all the surrogates models considered (PRG: 55%,
KRG: 39%, WAM: 44%). The slug size (x4) of the ASP
solution also has an important contribution to the
variability of the response (PRG: 27%, KRG: 22%,
WAM: 23%), followed by the alkali and surfactant
concentration. In summary, the rank of the total sen-
sitivity indices provided for most of the surrogates was
S3
totalNS4

totalNS1
totalNS2

total. While a similar rank was
found when only the individual contributions were con-
sidered, the latter case did not account for variable
interactions. For screening purposes total sensitivity
indices should be considered and the design variable
candidates to be fixed are those with lowest total sen-
sitivity index (i.e., surfactant concentration, x2).

While in general it is not possible to anticipate in oil
recovery processes what are the most important design
variables and interactions, having found polymer con-
centration (x3) and alkaline and surfactant concentration
(x1x2) as the most important design variable and inter-
action, respectively, is consistent with the facts that:
i) polymer concentration is critical to attain a proper
, b) KRG, c) WAM (ASP flooding case study).



Fig. 8. Relative value of the total sensibility indices. a) PRG, b) KRG,
c) WAM (ASP flooding case study).
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volumetric swept efficiency (Lake, 1989) and ii) there is
a synergy between alkaline and surfactant to lower the
interfacial tension between oil and water and conse-
quently enhance the displacement of oil (Wang and Gu,
2005).

6. Conclusions

• A methodology for global sensitivity analysis, a
critical step for the optimal design and control of oil
recovery processes (e.g., ASP flooding), has been
proposed. It involves the coupled execution of fast
surrogate models constructed from field scale numer-
ical simulation data with a global sensitivity analysis
algorithm (Sobol's method). The reservoir numerical
simulations are conducted using UTCHEM from the
University of Texas at Austin. Furthermore, the
surrogate-modeling uncertainty (different models can
provide reasonable approximations to the available
data) is addressed through the use of multiple sur-
rogates, namely, Polynomial Regression, Kriging,
Radial Basis Functions, and a Weighted Average
Model.

• After proper validation, the proposed approach was
evaluated using an ASP flooding pilot in a hetero-
geneous and multiphase petroleum reservoir with an
inverted five-spot pattern and a total of 13 vertical
wells, 9 producers and 4 injectors, three flowing
phases and eleven components, using a detailed
chemical reaction modeling. The contribution of each
of the design variables (alkaline, surfactant and poly-
mer concentrations and slug size) and their interac-
tions to the total variability were assessed finding
that: the polymer concentration was the most impor-
tant variable explaining more than half of the total
variability, and that the interactions were not sig-
nificant except for that of alkaline and surfactant
concentrations. These results are consistent with the
need to achieve a proper volumetric sweep efficiency
and the well known synergy between alkaline and
surfactant to enhance oil recovery.

• The complex heterogeneous multiphase and multi-
component nature of most oil recovery processes
(e.g., thermal, chemical and miscible gas flooding)
does not allow anticipating the most important var-
iables and interactions. A global sensitivity analysis
based on surrogate models can provide an answer to
this issue and be useful in other related problems
such as identifying main factors, variable selection
for maximum uncertainty reduction, main regions of
interest in the context of optimization, and model
validation.

Nomenclature
α Weights of the WAV model
B̂ Estimated parameters

ε Error
μ Mean of the population
θ Correlation parameter
σ Standard deviation
D Total variance
Di,…is Partial variance
f Objective function
I Identity matrix
k Number of surrogates
KRG Kriging model
L n-vector of ones
p Number of variables
r Correlation vector
R Correlation matrix
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PRG Polynomial Regression model
Si Individual sensitivity index
Si
total Total sensitivity index

V Variance
x The design variables
X Constraints set
WAV Weighted Average Model
y Function of interest
z Prediction variables
Z Matrix of the prediction variables
Subscripts
surr Surrogate model
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