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Abstract This paper presents a general approach to-
ward the optimal selection and ensemble (weighted
average) of kernel-based approximations to address
the issue of model selection. That is, depending on
the problem under consideration and loss function, a
particular modeling scheme may outperform the oth-
ers, and, in general, it is not known a priori which
one should be selected. The surrogates for the ensem-
ble are chosen based on their performance, favoring
non-dominated models, while the weights are adaptive
and inversely proportional to estimates of the local
prediction variance of the individual surrogates. Us-
ing both well-known analytical test functions and, in
the surrogate-based modeling of a field scale alkali-
surfactant-polymer enhanced oil recovery process, the
ensemble of surrogates, in general, outperformed the
best individual surrogate and provided among the best
predictions throughout the domains of interest.
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1 Introduction

The surrogate-based modeling approach is increas-
ingly popular and has been shown to be useful in
the analysis and optimization of computationally ex-
pensive simulation-based models in, for example, the
aerospace (Balabanov et al. 1998; Giunta et al. 1997;
Li and Padula 2004; Queipo et al. 2005), automotive
(Craig et al. 2002; Kurtaran et al. 2002), and oil in-
dustries (Queipo et al. 2002a,b). Surrogate-based mod-
eling makes reference to the idea of constructing an
alternative fast model (surrogate) from numerical sim-
ulation data and using it for analysis and optimization
purposes. However, practitioners still have to deal with
the issue of model selection where, depending on the
problem under consideration and loss function (i.e.,
quadratic, Laplace, ε-insensitive), a particular model-
ing scheme (e.g., polynomial regression, linear splines,
Gaussian radial basis functions, or Kriging) may out-
perform the others, and, in general, it is not known a
priori which one should be selected (Jin et al. 2001;
Simpson et al. 2001). While there are significant efforts
to address the above-referenced issue, practitioners are
still looking for guidelines on how to optimally perform
model selection.

On the other hand, kernel-based methods (Girosi
1998; Müller et al. 2001) provide the flexibility of gen-
erating models under alternative loss functions and, in
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Table 1 Kernel functions
associated with a variety of
modeling schemes

Kernel Parametrization

Polynomial order d k(x, x′) = (〈
x, x′〉 + c

)d d ∈ N, c ≥ 0
Spline k(x, x′) = 1 + 〈

x, x′〉 + 1
/

2
〈
x, x′〉 min(x, x′) − 1

/
6 min(x, x′)3

B-spline order 2n+1 k(x, x′) = B2n+1
(∥∥x − x′∥∥)

Bk = ⊗k
i=1I[−1/2 ,1/2 ]

RBF k(x, x′) = exp
(
− ∥

∥x − x′∥∥2 /
2h2

)
h > 0

ERBF k(x, x′) = exp
(− ∥

∥x − x′∥∥ /
2h2

)
h > 0

particular, support vector regression (SVR) developed
by Vapnik (1998) at AT&T Labs in the mid 1990s. It
is a rapidly developing field of research, already giving
state-of-the-art performances in a variety of applica-
tions, which provides a powerful alternative to con-
duct surrogate-based analysis and optimization. For a
discussion of SVR applications in engineering, see for
example Clarke et al. (2005) and references therein.

The power of SVR resides in several fronts, such
as: (1) robustness and sparseness of the solution; the
goodness of fit is measured not by the usual quadratic
loss function (mean square error) but by a different
loss function (ε-insensitive) similar to those used in
robust statistics (i.e., a way of dealing with devia-
tions from idealized assumptions) and a (2) flexible
and mathematically sound approach; non-linear regres-
sion models (e.g., polynomials, Gaussian radial basis
functions, splines, etc.) can be constructed as linear
ones by mapping the input data into a so-called fea-
ture space, namely, a reproducing kernel Hilbert space
(Wahba 2000). The linear models (a single framework)
are formulated in terms of dot products in a feature
space which can be efficiently calculated using spe-
cial functions (kernels) associated with the non-linear
regression models of interest evaluated in the origi-
nal space (kernel trick). This framework can also be
used with quadratic loss functions, which makes it an
ideal setting for ensembles of surrogate-based analysis
and optimization.

Previous efforts in the area of model selection have
focused on either: (1) select a particular surrogate from

a set of candidates using, for example, Akaike informa-
tion criterion (AIC; Buckland et al. 1997; Martin and
Simpson 2005), Bayesian information criterion (BIC;
Hoeting et al. 1999; Kass and Raftery 1995) or cross-
validation methods, or novel techniques based on learn-
ing theoretic performance bounds such as the structural
risk minimization method (Cherkassky and Ma 2003;
Cherkassky et al. 1999) or (2) build an ensemble of the
available surrogates (weighted average) with weights
calculated based on global (Bishop 1995; Goel et al.
2007; Perrone 1994; Perrone and Cooper 1993; e.g.,
AIC, BIC, MSE) or local (Zerpa et al. 2005) perfor-
mance measures.

The ensemble of surrogates approach accounts for
model selection, and there is evidence that it can pro-
vide better average predictive ability than using any
single model (e.g, Madigan and Raftery 1994), while
the variant of computing the weights using local perfor-
mance measures (prediction variance) consider the fact
that surrogates rank differently throughout the input
space. Zerpa et al. (2005) used analytical prediction
variance (known to underestimate the true values) as
local performance measures, but did not provide a
strategy to select surrogates to build the ensemble and
was limited to a quadratic loss function.

This paper provides a general approach, automatic,
with a reasonable computational cost toward the op-
timal selection and ensemble (weighted average) of
kernel-based models under alternative loss functions,
with weights based on empirically estimated prediction
variances while promoting diversity among the selected

Table 2 Surrogate models under consideration with the ε-insensitive loss function

Kernel Parameter Constant C ε Total number of models Models selected

RBF
hcm 15 1
0.5hcm 15 1

ERBF
hcm 0.25Ccm 15 1
0.5hcm 0.5Ccm 0 15 1

Polynimial
Degree 2 0.75Ccm 0.05 15 1
Degree 3 100Ccm 0.1 15 1

Spline Degree 3 1.50Ccm 15 1

B-spline
Degree 2 15 1
Degree 3 15 1
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Table 3 Surrogate models under consideration with a Quadratic loss function

Kernel Parameter Constant C Total number of models Models selected

RBF
hcm 5 1
0.5hcm 5 1

ERBF
hcm 0.25Ccm 5 1
0.5hcm 0.50Ccm 5 1

Polynomial
Degree 2 0.75Ccm 5 1
Degree 3 1.00Ccm 5 1

Spline Degree 3 1.50Ccm 5 1

B-spline
Degree 2 5 1
Degree 3 5 1

models; the latter has been shown to increase the bene-
fits of the ensemble approach (Krogh and Sollich 1997).
Its performance is evaluated using both well-known
analytical test functions, and, in the surrogate-based
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Fig. 1 Analytical test functions

modeling of a field scale alkali-surfactant-polymer
(ASP) enhanced oil recovery (EOR) process. ASP
flooding is the most promising EOR solution for one
of the greatest challenges facing the oil industry world-
wide: After conventional water flooding, the residual
oil (drops trapped by capillary forces) in reservoirs
around the world is likely to be around 70% of the
original oil in place (Dosher and Wise 1976; Lake 1989).

2 Problem definition

Given a training sample E = ((xh, yh) : 1 ≤ h ≤ n) of
a function y = f (x) defined in D ⊂ Rq, and l kernel-
based surrogate models Mi, 1 ≤ i ≤ l constructed from
sample E, select a set of m surrogate models and build
a weighted average model:

Wavg(x) =
m∑

i=1

βi(x)Mi(x) (1)

such that the weighted average model outperforms as
many individual surrogates as possible. In the equation
above, βi(x) represents the weight of model Mi(x) at
location x, and the performance measures are: mean
absolute error (ma)

∑n
h=1 abs(yh−M(xh))

n , standard devia-

tion (std)
√∑n

h=1(yh−M(xh))2

n−1 , and maximum absolute error
(max) max abs(yh − M(xh)), with 1 ≤ h ≤ n.

3 Solution methodology

It includes the following steps:

1. For each of the case studies, a Latin hypercube
sample (sparse) from the model input space is
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Table 4 Coefficients used for the evaluation of the analytical test function F3

aij ci Pij

1 10.0 3.0 17.0 3.05 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.00 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

drawn, and the corresponding model outputs are
calculated.

2. The model input and output values are normalized
to the scale [−1, 1].

3. For each of the SVR models differing in kernel
and loss function, a set of parameters are specified,
namely, C (regularization parameter) and ε (size of
insensitive zone); the kernels in SVR models are
described, for example, as Gaussian with width h
or polynomial with degree p (see next section for
details). The parameters C and ε were identified
using cross-validation (k-fold strategy) such that
they minimize the mean absolute value of the er-
rors. Specifically, after dividing the data into n/k
clusters, each fold is constructed using an element
from each of the clusters so it is a representative
sample of the model of interest. Note the diversity
of the potential members of the ensemble, as all
the models differ in either their kernel or loss func-
tion. The next section provides an introduction to
kernel-based regression.

4. Select the best m models among the set of non-
dominated models. The selection criterion is the
mean absolute cross-validation error, and non-
dominated models make reference to models that
provide the lowest error prediction in at least one
point in the training data.

5. Using the m models specified in the previous step, a
weighted average model is constructed. The adap-
tive weights βj(x) are inversely proportional to an
estimation of the prediction variance σ 2

j (x) of Mj

at point x. The local prediction variance for each

of the models is estimated empirically using the v

nearest neighbors of point x. Specifically,

σ 2
j (x) = 1

(v − 1)

v∑

h=1

(y(sh) − Mj(sh))
2 (2)

where s1, s2, ..., sv are the v nearest neighbors of
point x whose corresponding model outputs are
y(s1), y(s2)...y(sv). The weight for model Mj is then
given as:

βj(x) =
1

σ 2
j (x)

∑m
k=1

1

σ 2
k (x)

(3)

These weights can be shown to be an optimal selection
(Bishop 1995) for the case of uncorrelated models in
the ensemble. Optimality here makes reference to the
best linear unbiased estimator (minimum variance).

4 Kernel-based regression

The kernel-based regression models Mis can be seen as
solutions of the following variational problem:

min
M∈H

Z (M) = 1

n

n∑

i=1

L (yi − M (xi)) + λ ‖M‖2
H (4)

over some large space of functions H where L and
λ denote a particular loss function (e.g., quadratic,
Laplace, ε-insensitive, and Huber loss functions) and
a regularization parameter, respectively. The operator

Table 5 Input variable
restrictions (ASP modeling
case study)

Input variable Range Units

Min Max

Alkaline concentration (Na2CO3) 0 0.5898 meq/ml
Surfactant concentration 0.001815 0.005 Vol. fract.
Polymer concentration 0.0487 0.12 wt%
Injection time 111 326 days
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Fig. 2 Reference configuration (ASP modeling case study)

‖·‖2
H is the Hilbert-space norm which penalizes models

that are too complex.
If we restrict ourselves to reproducing kernel Hilbert

spaces (RKHS) the variational problem can be formu-
lated as stated in (5).

min
M∈H

Z (M) = 1

n

n∑

i=1

L
(
yi − 〈

M, Kxi

〉) + λ〈M, M〉H (5)

It can be shown that independently of the form of the
loss function, the solution of the variational problem
can be expressed as:

M(x) =
n∑

i=1

αik(x, xi) (6)

where k represents a kernel function. Table 1 shows
kernel functions associated with a variety of surrogate
modeling schemes.

In particular, if the loss function is quadratic, the
coefficients in (6) can be found by solving the following
linear system:

(nλI + K)αi = yi

where K denotes the so-called Gram matrix with com-
ponent Kij denoting k(xi, x j), and I representing the
identity matrix. Alternatively, if the ε-insensitive loss
function is used, the coefficients in (6) are found
by solving a quadratic programming problem. See
Schölkopf and Smola (2002) and Poggio and Smale
(2003) for details.

5 Case studies

5.1 General considerations

The solution methodology is evaluated using three
well-known (Jin et al. 2001) test functions (F1, F2, F3)
with and without noise and a modeling problem in the
area of enhanced oil recovery. The test functions with
noise consider two noise levels (α1 = 0.05, α2 = 0.1)

and a uniform noise distribution U , as specified by the
following expression: Fk

(
1 + α

(
U − 1

2

))
.

Tables 2 and 3 show the models under consideration
with quadratic and ε-insensitive loss functions and ker-
nels for polynomial, Gaussian radial basis functions, ex-
ponential radial basis functions, splines, and B-splines
as specified in Table 1. Third- and second-order poly-
nomials and third-degree splines are considered. The ε

and C values under consideration are 0, 0.05, 0.1 and
0.5 Ccm, 0.75 Ccm, 1.00 Ccm, 1.5 Ccm, respectively; the h
values are set equal to 1.00hcm and 0.50hcm, with Ccm

and hcm reference values as proposed by Cherkassky
and Ma (2004). The kernel-based regression problems
are solved using the Matlab support vector machines
(SVM) toolbox (Gunn 1998).

The parameter values are selected using cross-
validation (k-fold) and 20 training points with k = 5
for the analytical F1 and F2 test cases (Section 5.2),
60 training points with k = 10 for the analytical F3

test case, 64 training points with k = 8 for the ASP

Table 6 Reservoir and fluid
properties (ASP modeling
case study)

Property Value Unit

Reservoir depth 4150 (1265) ft (m)
OOIP 395,427 (62,868) bbls(m3)
Oil viscosity 40 cp
Porosity 0.3 fraction
Average Initial Pressure 1770 psi
Well ratio 0.49 (15) ft (m)
Skin factor 0.0 adim
Water salinity C+2

Na (0.0583) meq/ml
C+2

Ca (0.0025) meq/ml
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Table 7 Characterization of the models in the ensemble of five models based on loss and kernel functions for the different scenarios.
The sequence X − Fi − Y represents the sample, the test function and noise level (if applicable)

Training Loss function Kernel function
sample

ε-Insensitive Quadratic RBF ERBF Poly Spline B-spline

A − F1 3 2 1 2 – – 2
B − F1 4 1 2 2 – 1 –
A − F2 3 2 1 – – – 4
B − F2 3 2 1 – – – 4
A − F3 4 1 2 – 1 1 1
B − F3 3 2 2 2 – – 1
A − F1 − α1 2 3 1 2 – 1 2
B − F1 − α1 3 2 2 1 1 – 1
A − F2 − α1 2 3 2 – – – 2
B − F2 − α1 2 3 2 – – – 3
A − F3 − α1 2 3 2 1 – – 2
B − F3 − α1 2 3 2 1 – – 2
A − F1 − α2 2 3 1 4 – – –
B − F1 − α2 3 2 2 1 – – 2
A − F2 − α2 2 3 2 – 1 – 2
B − F2 − α2 2 3 2 – – – 3
A − F3 − α2 5 – 2 2 – 1 –
B − F3 − α2 3 2 2 2 – – 1
Total 50 40 31 20 3 4 32

modeling case study (Section 5.3) . For all analytical test
cases, two alternative training samples (A and B) are
used to check the sensitivity of the proposed approach
to the design of experiment. The weights are calculated

using three neighbors, and the test data sets are a mesh
of 10 × 10 points and 56 points for the analytical test
cases F1 and F2, and F3, respectively, and 13 selected
points for the ASP modeling case study.

Table 8 Characterization of the models in the ensemble of five models based on the parameters C and ε for the different scenarios.
The sequence X − Fi − Y represents the sample, the test function and noise level (if applicable)

Training ε-insensitive C
sample 0.00 0.05 0.10 0.25Ccm 0.50Ccm 0.75Ccm 1.00Ccm 1.50Ccm

A − F1 1 2 – 1 – – – 4
B − F1 3 – 1 – 1 1 – 3
A − F2 2 1 – 2 1 – – 2
B − F2 3 – – 2 – – – 3
A − F3 3 1 – 3 – – – 2
B − F3 3 – – 3 – 1 – 1
A − F1 − α1 – 1 1 1 – 1 – 3
B − F1 − α1 – 3 – 1 – – – 4
A − F2 − α1 1 – 1 1 1 – – 3
B − F2 − α1 – 2 – 2 1 – – 2
A − F3 − α1 2 – – 1 – – – 4
B − F3 − α1 2 – – 1 – – – 4
A − F1 − α2 1 – 1 – – 1 – 4
B − F1 − α2 2 1 – 2 – – – 3
A − F2 − α2 – 1 1 1 – – – 4
B − F2 − α2 1 1 – 1 – – – 4
A − F3 − α2 5 – – 1 2 – – 2
B − F3 − α2 3 – – 2 1 – 1 1
Total 32 13 5 25 7 4 1 53
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(a)  Test function  F1

(b)  Test function  F2

Fig. 3 Models that provide the best prediction at training loca-
tions in the input space for test functions F1 and F2. The numbers
represent the model rank based on cross-validation error

The sensitivity of the approach to the number of
models in the ensemble (5, 10, 18) and to the number
of v nearest neighbors (3, 5) for computing the local
prediction variance is also evaluated.

5.2 Analytical test functions

The analytical test functions (F1, F2 and F3) with the
corresponding domains of interest are shown in (7 –9).
The functions F1 and F2 are shown in Fig. 1. Values
for the coefficients in function F3 are shown in Table 4.
Note that functions F1 and F2, and F3 exhibit two and
six dimensions, respectively.

F1(x) = [30 + x1 · sin(x1)]
⌊

4 + exp(−x2)
2
⌋

0 ≤ x1 ≤ 9 0 ≤ x2 ≤ 6 (7)

F2(x) = sin
(π · x1

12

)
· cos

(π · x2

16

)

−10 ≤ x1 ≤ 10 − 20 ≤ x2 ≤ 20
(8)

F3(x) = ∑4
i=1 ciexp

{
− ∑6

j=1 aij
(
x j − pij

)2
}

0 ≤ x j ≤ 1

(9)

5.3 Alkali-surfactant-polymer (ASP) modeling

Previous works toward the modeling and optimization
of ASP processes have concentrated mainly around
identifying formulations that will achieve minimum
interfacial tension using laboratory experiments and
empirical correlations (Bourrel et al. 1980; Salager
1996; Salager et al. 1979a,b), and sensitivity analyses
using numerical simulation at core and field scale levels
(Carrero et al. 2007; Hernández et al. 2001; Manrique
et al. 2000; Qi et al. 2000; Wei-Ju 1996; Zhijian et al.
1998). See Zerpa et al. (2005) for details. Formal ASP
flooding analysis and optimization efforts have been
very limited mainly due to the high computational cost
exhibited by the numerical simulations at the reservoir
level, which makes impractical the coupled execution of
the simulator and optimization algorithms.

The design of an ASP flooding process must achieve
three main objectives: propagation of the chemicals
in an active mode, the injection of enough chemicals
accounting for the retention, and a complete swept
of the area of interest (Lake 1989). Achieving these
objectives is significantly affected by the selection of the

Fig. 4 Frequency of models that provide the best prediction
at training locations for test function F3. The letters Mi make
reference to the model ranked i based on cross-validation error
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Fig. 5 Empirical distribution of the errors at each training loca-
tion of the models in the ensemble for selected case studies

chemicals, the concentration of the ASP solution and
the slug size, among other factors.

The ASP enhanced oil recovery modeling problem
addressed here is to build a surrogate model of a com-
putationally expensive numerical simulator that will
take as input: concentration of alkaline, surfactant and
polymer, and ASP slug size (expressed in the form
of the injection time), and as output, the cumulative

Fig. 6 Empirical distribution of the errors at each training loca-
tion of the models in the ensemble for the case study F3 − α1

Fig. 7 Frequency histograms of the mean absolute value of the
errors at test locations for all available models and selected case
studies

oil production. The ranges of the input variables are
presented in Table 5. The cumulative oil production
is calculated at 487 days. As illustrated in Fig. 2, the
ASP flooding pilot has an inverted five-spot pattern

Fig. 8 Frequency histograms of the mean absolute value of
the errors at test locations for all available models and case study
A − F3
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Fig. 9 Mean absolute error of
the members of the ensemble
and the ensemble model for a
variety of scenarios. The
letter Mi makes reference to
the model ranked i based on
cross-validation error
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Table 9 Frequency of the rank of the ensemble model using a local performance measure (lowest error) at test locations, with respect
to the individual models in the ensemble for the different scenarios

Rank F1 F2 F3

Sample A Sample B Sample A Sample B Sample A Sample B

No. points No. points No. points No. points No. points No. points

No First 9 5 0 7 1,537 771
noise Second 30 34 38 26 1,606 1,320

Third 32 21 32 41 5,700 5,499
Fourth 27 19 21 11 5,389 7,684
Fifth 7 21 9 15 1,384 351
Sixth – – – – – –
Total 100 100 100 100 15,625 15,625

Noise First 20 8 0 0 893 1,210
5% Second 5 25 2 11 1,848 2,201
(α1) Third 39 32 48 56 5,858 5,363

Fourth 32 26 41 30 6,174 5,703
Fifth 4 9 9 3 852 875
Sixth – – – – – –
Total 100 100 100 100 15,625 15,625

Noise First 1 7 3 2 1,424 1,136
10% Second 9 12 7 9 2131 1,462
(α2) Third 46 37 35 47 4,860 6,648

Fourth 38 44 49 34 6,302 6159
Fifth 6 0 6 8 908 220
Sixth – – – – – –
Total 100 100 100 100 15,625 15,625

and a total of 13 vertical wells, nine producers and four
injectors. The reservoir is at a depth of 4,150 ft, has an
average initial pressure of 1,770 psi, and the porosity
is assumed to be constant throughout the reservoir
and equal to 0.3. The numerical grid is composed of
19 x 19 x 3 blocks in the x, y and z directions. The
original oil in place is 395,427 bbls, the crude oil viscos-
ity is 40 cp, the initial brine salinity is 0.0583 meq/ml,
and the initial brine divalent cation concentration is
0.0025 meq/ml. A summary of the reservoir and fluid
properties is presented in Table 6. The injection scheme
and other reference configuration details can be found

in the sample data files of the UTCHEM program
(UTCHEM-9.0 2000).

The UTCHEM program is a three-dimensional, mul-
tiphase, multicomponent reservoir simulator of chemi-
cal flooding processes developed at the University of
Texas at Austin (Engelsen et al. 1987; Lake et al.
1990; Pope and Nelson 1978). The basic governing
differential equations consist of: a mass conservation
equation for each component, an overall mass con-
servation equation that determines the pressure (the
pressure equation), an energy balance, and Darcy’s
Law generalized for multiphase flow. The resulting

Table 10 Rank of the ensemble model using global error performance measures at test locations, with respect to the individual models
in the ensemble for the different scenarios

Sample F1 F2 F3

ma std max ma std max ma std max

No A First First Second Second Second Third Third Fourth Third
noise B Third Fourth Fourth Second Second Fourth Fourth Third Second

Noise A First Second First Third Third Fourth First Second Fourth
5% (α1) B Second Second First Third Third Third First Fourth Third

Noise A Fourth Third Fourth Fourth Fourth Fourth Fourth Fourth Fourth
10% (α2) B Second Fourth First Third Third Third First Third First
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Table 11 Surrogate models error performance (ASP modeling case study)

Model Kernel Loss function ma std max

M1 RBF ε-Insensitive 1.95 2.90 5.62
M2 ERBF ε-Insensitive 2.14 2.92 5.42
M3 Polynomial ε-Insensitive 2.33 2.97 5.90
M4 RBF ε-Insensitive 0.94 2.84 4.43
M5 Spline ε-Insensitive 1.95 3.18 5.62
Mavg – – 1.87 2.74 5.15

flow equations are solved using a block-centered finite-
difference scheme. The solution method is implicit in
pressure and explicit in concentration, similar to the
well-known IMPES method used in blackoil reservoir
simulators. A Jacobi conjugate gradient method is used
to solve the system of finite difference equations re-
sulted from the discretization of the pressure equation.

Three flowing phases and 11 components are consid-
ered in the numerical simulations. The phases are wa-
ter, oil, and microemulsion, while the components are
water, oil, surfactant, polymer, chloride anions, divalent
cations (Ca2+, Mg2+), carbonate, sodium, hydrogen
ion, and oil acid. The ASP interactions are modeled
using the reactions: in situ generated surfactant, pre-
cipitation and dissolution of minerals, cation exchange
with clay and micelle, and chemical adsorption. Note
the detailed chemical reaction modeling and the het-
erogeneous and multiphase petroleum reservoir under
consideration.

6 Results and discussion

Table 7 shows the selected models (step 4 in the so-
lution methodology) among those in consideration for
the analytical test functions F1 ,F2 and F3 with and
without noise. Note the diversity of the models in the
ensemble for the different scenarios, with no prevailing
loss function; in contrast, RBF, ERBF, and B-Spline
were heavily favored as kernel functions. On the other
hand, Table 8 shows the parameters C and ε obtained
for the models in the ensemble; lower values of the pa-
rameter ε were frequently selected, with the parameters
0.25Ccm and 1.5Ccm associated with the best results.

Figures 3 and 4 illustrate the models that provide
the best prediction throughout different regions of the
input space for test functions F1, F2 (Fig. 3), and F3

(Fig. 4). Note that no individual model outperforms the
others, and, the range of the errors of the models at
the training locations is, in general, significant. Figures
5 and 6 show the range of errors for selected test
cases. Hence, in a real setting, at a particular location
it is not known in advance which individual model will

prevail; so an average model that weights the influence
of individual models based on local measures of their
error can be a more robust alternative than using any
single model.

Selecting a single model from those in consideration
can be risky. Figures 7 and 8 show frequency histograms
of the mean absolute value of the errors for all avail-
able models and the mean absolute value of the error
corresponding to the ensemble. Note the wide range of
possible errors and the low value of the error associated
with the ensembles when compared to the central value
of the errors in the histograms. In addition, the best
model selected based on training data performance
was, in general, outperformed by the ensemble model,
with the latter providing a more robust behavior (Figs.
9 and 10).

Tables 9 and 10 show the relative performance
of the ensemble model for all scenarios with respect
to the members of the ensemble using both local
(Table 9) and global (Table 10) performance measures.
When using local performance measures, in general,
more than sixty percent of the time, the ensemble
model was among the top three models using the test
data, and never provided the worst performance when
compared to the best individual models. On the other
hand, when using mean absolute error, maximum error,
and, standard deviation of the error, and considering
all scenarios, the ensemble model was among the top
three models sixty percent of the times, and, again,

Table 12 Frequency of the rank of the ensemble model using a
local performance measure (lowest error) at test locations, with
respect to the individual models in the ensemble (ASP modeling
case study)

Rank No. points

First 2
Second 0
Third 5
Fourth 5
Fifth 1
Sixth –
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Table 13 Global error performance measures for different ensemble sizes at test locations. The sequence X − Fi represents the sample
and test function

Sample Ensemble size ma std max

5 4.9142 4.7090 29.2471
A − F1 10 5.7348 5.7452 36.7156

18 6.2841 5.8181 35.6998
5 8.8954 10.0967 42.7410

B − F1 10 9.2224 9.6538 40.1760
18 9.8320 9.9998 40.6460
5 0.1347 0.1931 0.6079

A − F2 10 0.1033 0.1814 0.4066
18 0.0943 0.1676 0.3031
5 0.2411 0.1887 1.1950

B − F2 10 0.1647 0.1301 0.9255
18 0.1147 0.0891 0.7291
5 0.2149 0.2299 2.0730

A − F3 10 0.2129 0.2284 2.0694
18 0.2153 0.2269 2.0929
5 0.1770 0.1976 1.9180

B − F3 10 0.1794 0.2000 1.8940
18 0.1876 0.1996 1.7735

Table 14 Rank of the ensemble model with reference ensemble size with respect to those with size 10 and 18 using global error
performance measures at test locations

Sample F1 F2 F3

ma std max ma std max ma std max

A First First First Third Third Third Second Third Second
B First First First Third Third Third First Fist Third

Table 15 Frequency of the rank of the ensemble model of size 10 using a local performance measure (lowest error) at test locations,
with respect to the individual models in the ensemble for different scenarios

Rank F1 F2 F3

Sample A Sample B Sample A Sample B Sample A Sample B

No. points No. points No. points No. points No. points No. points

First 8 – 3 3 956 689
Second 4 2 2 5 925 873
Third 7 3 1 3 1,012 1,071
Fourth 19 8 8 4 1,498 1,635
Fifth 22 20 21 29 2,471 4,183
Sixth 19 30 28 29 4,196 3,227
Seventh 10 30 27 30 3,002 2,884
Eighth 7 7 8 4 1,255 972
Ninth 4 – 2 2 296 84
Tenth – – – – 14 7
Eleventh – – – – – –
Total 100 100 100 100 15,625 15,625
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Table 16 Frequency of the rank of the ensemble model of size 18 using a local performance measure (lowest error) at test locations
with respect to the individual models in the ensemble for different scenarios

Rank F1 F2 F3

Sample A Sample B Sample A Sample B Sample A Sample B

No. points No. points No. points No. points No. points No. points

First 12 – 4 1 705 866
Second 5 1 1 2 695 906
Third 3 1 4 – 739 927
Fourth 4 4 2 5 783 955
Fifth 3 4 4 7 916 1,013
Sixth 8 3 6 4 1,110 1,205
Seventh 12 6 3 6 1,338 1,535
Eighth 10 14 5 7 1,568 1,764
Ninth 20 25 6 14 1,821 1,763
Tenth 9 18 4 9 2,392 1,912
Eleventh 6 15 8 11 1,786 1,415
Twelfth 3 6 16 10 998 793
Thirteenth – – 17 21 567 412
Fourteenth 3 1 4 2 164 128
Fifteenth 2 0 6 1 38 31
Sixteenth – 2 – – 5 –
Seventeenth – – – – – –
Eighteenth – – – – – –
Nineteenth – – – – – –
Total 100 100 100 100 15,625 15,625

was never among the two worst models considering
the best individual models. Note that the noise in the
test functions did not significantly affect the ensemble
performance.

Table 11 shows the ensemble model performance
using the test data set for the ASP modeling case study.
The ensemble model was among the top two models
regardless of the performance measure (mean absolute
error, standard deviation and maximum absolute error)
under consideration. In addition, locally, the ensemble
model was among the top three models more than half
of the times and was never the worst when compared to
the best individual models (Table 12).

Next, an assessment is made of the sensitivity of the
results to parameters such as the number of: models
in the ensemble and nearest neighbors used in the
estimation of the local prediction variance. Note that
the latter parameter is used to calculate the weights
assigned to the models in the ensemble.

Table 13 presents global error performance mea-
sures using the test data set for three ensemble model
sizes, namely, 5, 10, and 18 . The results exhibit error
performance measures that can vary with the ensemble
size, but no general trend was observed; that is, depend-
ing on the test function, error measure, and design of
experiment, different ensemble sizes showed the lowest

Table 17 Global error performance measures for different values of the number of nearest neighbor parameter using the reference
ensemble model

Case study v = 3 v = 5

ma std max ma std max

A − F1 4.9142 4.7090 29.2471 4.8326 4.7335 29.8100
B − F1 8.8954 10.0967 42.7410 8.6466 10.1471 42.1527
A − F2 0.1347 0.1931 0.6079 0.1317 0.1952 0.6016
B − F2 0.2411 0.1887 1.1950 0.2577 0.2162 1.3987
A − F3 0.2149 0.2602 2.0730 0.2145 0.2597 2.0796
B − F3 0.1770 0.1998 1.9180 1.1705 0.1987 1.9190

The sequence X − Fi represents the sample and test function.
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error. Table 14 shows the relative position of the en-
semble with size 5 with respect to those of sizes 10 and
18 which confirm the previous observation. Neverthe-
less, in general, all the ensembles gave reasonable ap-
proximations to the test functions. When using a local
performance measures for all test functions and design
of experiments for ensembles of sizes 10 (Table 15) and
18 (Table 16), the ensemble model often outperformed
the best individual models and was never the worst
among the best individual models. In summary, while
the ensemble size affects the ensemble performance,
the sensitivity, after the reference ensemble size, is not
strong enough to significantly deteriorate the robust-
ness of the proposed approach. Similarly, the effect
of increasing the nearest neighbors number from the
reference value to 5 did not have an impact on global
error performance measures such as those shown in
Table 17. On more general settings, a sensitivity study
is recommended, in particular, considering that the
proposed approach can be conducted without human
intervention and at a reasonable computational cost.

7 Conclusions

This section provides a brief description of the pro-
posed approach for model selection, evaluation proce-
dures, main findings and possible extensions.

– This paper presented a general approach toward
the optimal selection and ensemble (weighted av-
erage) of surrogates (kernel-based approximations)
to address the issue of model selection. Kernel-
based regression provides an ideal setting for gen-
erating alternative models, and building ensembles
of surrogates have been shown to be a worthy
alternative to model selection. The surrogates for
the ensemble are chosen based on their perfor-
mance, favoring non-dominated models, while the
weights are adaptive and inversely proportional to
estimates of the local prediction variance of the
individual surrogates.

– The proposed approach was evaluated using well-
known analytical test functions (in two and six
dimensions) and, in the surrogate-based modeling
of a field scale alkali-surfactant-polymer (ASP) en-
hanced oil recovery process considering quadratic
and ε-insensitive loss functions and kernels for
polynomial regression, cubic splines, cubic B-
splines, Gaussian radial basis functions, and expo-
nential radial basis functions.

– It was shown that in general, the best prediction
throughout the input space is given by different sur-
rogates, and the range of the errors of the models

at the training locations is, in general, significant;
hence, selecting a single model can be risky, and
even the best model selected based on training
data performance was frequently outperformed by
the ensemble of surrogates when evaluated using
test data.

– When using local performance measures, in gen-
eral, more than 60% of the times, the ensemble
model was among the top three models using the
test data and never provided the worst performance.
On the other hand, when using mean absolute er-
ror, maximum error, and, standard deviation of the
error and considering all scenarios, the ensemble
model was among the top three models 60% of the
times, and, again, was never among the two worst
models. Note that the results for the test functions
with noise did not affect the ensemble performance.

The proposed ensemble approach: (1) showed to be
effective within the context of both analytical and engi-
neering case studies, (2) could be extended to automati-
cally set the number of nearest neighbors and ensemble
size to optimally perform model selection, hence pro-
viding even more specific guidelines to practitioners,
and (3) holds promise to be useful in more general
engineering analysis and optimization scenarios.
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