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Abstract 

The Dykstra-Parson (DP), the most popular heterogeneity static measure among petroleum 

engineers, may be at a significant error, in particular when assumptions are made about the 
permeability distribution (parametric approaches) that may lead to unrealistic reservoir 
performance predictions and unsuccessful development plans. This paper presents the 
development of an asymptotic distribution of the Dykstra-Parsons coefficient that is independent 
of the probability distribution of the permeability variable. The effectiveness (bias and confidence 
intervals) of the proposed approach is demonstrated by comparing the results those obtained using 
the classical method, and well-known parametric methods, under different scenarios of reservoir 
maturity levels (i.e., number of wells), and degree violations of the log-Normal probability 
density function assumption. The results show that in the vast majority of the case studies the 

proposed approach outperformed previously reported methods, in particular, resulted in a 
significant reduction of the bias and, with confidence intervals always including the estimated DP 
coefficient. In addition, an excellent agreement was observed between the asymptotic cumulative 
distribution of the DP coefficient and the corresponding empirical distribution for sample sizes as 
low as 100, which allows classifying reservoirs according to their DP coefficient with high 
success rates.    

I. Introduction 

In the context of enhanced oil recovery projects, heterogeneity (the spatial variation of properties) 
has long been recognized as a key component in predicting reservoir performance, namely, 
amount of petroleum recovered, time to breakthrough, and peak hydrocarbon production (Jensen 
et al., 1986; Jensen and Lake, 1986; Lake and Jensen, 1989; Jensen and Currie, 1990).  While the 
complexity of the heterogeneity/performance relationship is well documented, for screening 
purposes, or to establish if a more detailed study is justified, the Dykstra-Parsons (DP) coefficient 
remains as the most popular heterogeneity static measure among petroleum engineers. The DP 

coefficient estimates, though, may be at a significant error, so assessing its bias and confidence 
intervals are issues of considerable interest that may lead to more realistic reservoir performance 
predictions and successful development plans.    

Previous works based for DP estimates and confidence intervals assume the reservoir property of 
interest (typically, permeability) has associated a log-Normal probability density function or there 
is a transformation (Box-Cox) that can lead to Normal behavior (Jensen and Lake, 1986); 
frequently, however, this assumption does not hold.  This paper presents a novel approach that 
overcome this limitation and provides sample DP estimates and confidence intervals based on the 
asymptotic Normal behavior of the joint probability distribution of cuantiles.  

The following section discusses the theoretical and sampled DP coefficient, Sections III presents 
a frequently used parametric approach, Section IV develops an asymptotic DP estimator, a 
description of the case studies used for evaluating the relative performance of the proposed 
approach is the subject of Section V, while Section VI and VII discuss the results obtained, and 

the most significant conclusions, respectively.        
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II. Dykstra-Parsons coefficient  

It represents a robust estimation of the well-known coefficient of variation σ/μ, a normalized 
measure of dispersion of a probability distribution, used for describing reservoir permeability 
heterogeneity.  Dykstra y Parsons (1950) recognized that the classical coefficient of variation for 

asymmetric probability distributions (such as those associated to permeability) was very sensitive 
to extreme values, in particular, considering the relatively small sample sizes typically available 
in oil industry environments. As a result, they substituted the classical statistics σ and μ for analog 
quantities calculated using order statistics (quantiles) of the probability distribution of reservoir 
permeability.  More specifically, if the probabilities p1 = 0.1587, and  p2 = 0.5, and F is the 
cumulative probability distribution of the permeability of interest (random variable X), the 
theoretical Dykstra-Parsons (DPT) coefficient is calculated as: 
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where xpi is the quantile of the probability distribution of  X associated with pi, that is,  F(xpi)=pi. 
The probabilities p1 = 0.1587, and p2 = 0.5 are such that if the cited probability distribution is 
normal the DPT is equivalent to the coefficient of variation. Note that xp2 is the median of the 
population and that for positive random variables such as permeability, 0<DPT<1. 

 

Since only a sample (size n) of the random variable X is available, X1,......,Xn, this is 

ordered such as, X(1) <= X(2) ….<= X(n), and each element X(i)  represents the i-th order statistics. 
Then, the sampled DP coefficient (Equation 1) is calculated using sample quantiles qn(p)  where, 
for a given probability p,  qn(p) is the h-th order statistics  X(h)  with h = [np] + 1 corresponding to 

the sample size n; the symbol [.] denotes the integer part operator.    
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III. Dykstra-Parsons coefficient estimator – Parametric scenario 

Jensen and Currie (1990) show that if the probability distribution of the permeability (random 
variable X) is assumed to be Log-normal, it is possible to obtain a consistent DP coefficient 
estimator that outperforms (in terms of bias and variance) the corresponding sampled DP 

coefficient.  Specifically, if the random variable X is ),( 2LogNormal , the theoretical DP 

can be expressed as: 
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which as expected grows with increasing values of  Since σ is unknown in the 

expression above, it is substituted by an unbiased estimator 
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14C  , and s is the sampled (log of sample values) standard deviation.  

http://en.wikipedia.org/wiki/Normalization_%28statistics%29
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Probability_distribution
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The expected value of the Jensen and Currie (1990) estimator can then approximated as   (using 
the Delta-Method) by: 

n4
ee1DPE

2

J

  )(  

Note that the expression above underestimates the theoretical DP coefficient (DPT) and the bias is 
proportional to the inverse of the sample size (n). The standard deviation of the Jensen and Currie 

estimator can be approximated as: 
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Assuming the DPJ estimator is Normally distributed, Jensen and Currie set up a 95% confidence 
interval equal to:   
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While the Log-normal assumption has been useful, it is well-known that, frequently, this 
assumption may not hold. See, for example, Lambert (1981), Goggin et al. (1986), and Jensen and 
Lake (1985).  
 
IV. Dykstra-Parsons coefficient estimator – Non-parametric scenario   

This section presents the development of an asymptotic distribution of the Dykstra-Parsons 
coefficient that is independent of the probability distribution of the permeability (random variable 
X).     
 
Theorem (Cramer, 1999). The joint distribution of two centered quantiles denoted as qn(p1) and 
qn(p2) with (p1<p2)  is asymptotically Normal with mean a vector with the quantiles of the 
population: 
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And convariance matrix COV/n, where: 
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The symbol f denotes the probability distribution associated with the random variable X. More 
precisely, when n  the following expression converge to a Normal probability distribution,  
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Note the symmetric and positive definite nature of matrix COV and, the asymptotic distribution 
of the individual quantiles.    
 
On the other hand, the probability distribution of a linear combination of quantiles (Z):  

 

)()( 21 pbqpaqZ nn   

can be derived. Following the previous result, Z is asymptotically Normal with expected value:  
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Hence, independently of the probability distribution of origin for the random variable X 
(permeability), the linear combination of quantiles Z follows a Normal probability distribution 
with mean and variance as specified by Equations 2 and 3.  

 

Now, the cumulative probability distribution of the Dykstra-Parsons coefficient, FDP(x), can be 

estimated.  The FDPA(x) is represented by:  
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and can be rearranged as:  
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The expression in parenthesis in the right hand side of Equation 4, is a linear combination of 
quantiles as specified in Equation 2 with p1=0.159, p2=0.5, a=1  and b=y-1. Hence, Equation 4 
can be rewritten as: 
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With variable Z Normally distributed with expected value: 
 

E(Z)= xp1 + (y-1)xp2                                                           (5) 

 
where xp1= F-1(0.159) and xp2= F-1(0.5) are the quantiles required by the theoretical Dykstra-
Parsons, DPT. and, variance equal to: 
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If the expected value E(Z) and square root of Var (Z) in Equations 5 and 6 are denoted by µz , and 
σz,, respectively, the asymptotic cumulative probability distribution of the Dykstra-Parsons 
coefficient can be written as:  
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where Φ(.) denotes the cdf of the standard Normal distribution. Note that this expression depends 
only on the theoretical quantiles xp1 and  xp2, the density function values f(xp1) y f(xp2) and 
sample size n. The cited theoretical quantiles and density function values could be approximated 
using the corresponding sample values.  
 
Once the FDPA distribution is available, the expected value of the asymptotic DP coefficient can 

be calculated as:   
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Since the FDPA(y) is available for every y, it is possible to numerically estimate the above-

referenced integrals, as well as to establish the density function )(yfDPA . Asymptotic confidence 

intervals [L,U] with a 1-α associated probability can also be obtained as )/( 2FL 1
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V. Case studies: Two-way mixture of Log-normal probability distributions 

 
The case studies were designed for frequent situations where an oil reservoir is represented by 
two litofacies and a mixture of Log-normal probability distributions may be a reasonable 
approximation to characterize the permeability. Different samples of this distribution under 
alternative scenarios of reservoir maturity levels (i.e., 100 and 200 wells) may or may not reject 
the Log-normal assumption (based on the p-value of the Lilliefors tests) which will help establish 

the relative performance of the parametric and asymptotic non-parametric approaches. In 
addition, the effectiveness of the proposed asymptotic DP estimator for decision making (e.g., 
classifying a reservoir as low, medium, or highly heterogeneous) is also evaluated.  
 
The parameters of the two-way mixture of Log-normals are shown in Table 1 with the  theoretical 
DP coefficient being equal to 0.667 (medium heterogeneity). The  density function for this 
mixture constructed using Parzen windows are in general similar to single Log-normal probability 
distributions which may mislead partitioners on the true nature of the permeability statistical 

characterization.   

 
Table 1. Parameters of the two-way mixture of Log-Normal probability distributions (Case 
studies)  
 

Parameter Distribution 1 Distribution 2 

Permeability mean (μd) 600 145 
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Dykstra-Parsons coefficient 0.4 0.4 

Weigh in the mixture (%) 60 40 

 

 

VI. Results and discussion 

 

With reference to Table 2, note that in general for samples of size 100, the DPA estimates were 
close to the theoretical one, even in those instances where the Log-normal hypothesis could not 
be rejected. Furthermore, the median of the differences between the theoretical DP value and the 
DP-parametric and asymptotic estimates were approximately 0.08 (biased) and 0 (unbiased), 

respectively. Similar results were obtained for the larger sample size (200).   

 
 
Table 2. Number of instances where the Dykstra-Parsons coefficients using the parametric and 
non-parametric approaches were closer to the theoretical DP coefficient (0.667).  
 

 

 
Lilliefors 

Test – 

Null 

hipótesis 

(α=5%) 

Sample size 

100 200 

 
Total 

DP- 
parametric 

DP- 
Asymptotic 

 
Total 

DP- 
parametric 

DP- 
Asymptotic 

Reject 58 4 54 93 2 91 

Do not 
reject 

42 1 41 7 0 7 

Total 100 5 95 100 3 97 

 
 
For a sample of size 100, Figures 1-a and 1-b exhibit the confidence intervals associated with the 
asymptotic DP and parametric estimates, respectively. The latter only included the theoretical 

value of the DP coefficient (0.667) in three instances, while the former included the theoretical 
DP coefficient in all but three occasions.  Increasing the sample size to 200 led to DP parametric 
estimates farther away from the theoretical value.    
 
The 95% confidence intervals for the asymptotic and parametric approaches were also compared 
using population parameters, for quantiles, and density function values, and, standard deviation, 
respectively. The lower and upper limits for the asymptotic DP confidence interval were (0.557 - 
0.746), close to the theoretical one, namely,  (0.573 - 0.747), while the confidence interval 

associated with the parametric DP approach (0.528 - 0.6311) is biased to the left  and does not 
include the theoretical (0.667) Dykstra-Parsons coefficient. Similar results were obtained for the 
larger sample size.   
 
Figure 2 shows the excellent agreement between the asymptotic cumulative probability 
distribution of the Dykstra-Parsons coefficient and the corresponding empirical cdf  for 1000 
simulations of sample sizes of 100 (a) and 400 (b). This agreement leads to the possibility of 

using the asymptotic FDP (x) to help support decisions related to whether to classify a reservoir as 
low, medium, or highly heterogeneous, for screening purposes, or to establish if a more detailed 
study is justified. As an example, for the case study where the DP coefficient is known (0.667), a 
common classifying scheme would make it a reservoir with medium heterogeneity (0.5<DP<0.7); 
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reservoirs with DP values higher than 0.7 would be considered as highly heterogeneous. Note the 
proximity of the known DP coefficient to the classifying frontier. A relevant question in this 
context would be what is the probability of an asymptotic DP coefficient higher than 0.7 (hence 
wrongly classifying it as highly heterogeneous) when in fact the DP coefficient is 0.667. Figure 3 
shows the results corresponding to 10000 simulations and different sample sizes.    

 
Note that even though the theoretical DP coefficient is close to the classification frontier (0.667 
vs. 0.7) the average probability of an asymptotic Dykstra-Parsons coefficient higher than 0.7 is 
about 0.3 for a sample size of 100 and, as expected, it significantly decreases with larger sample 
sizes. Among the 10000 simulations, the actual samples with asymptotic Dykstra-Parsons 
coefficients higher than 0.7 were only about 20% (classification error) for the sample size equal 
to 100, and decreases to only about 9% and 4% for sample sizes of 300 and 500, respectively.   
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Figure 1. Confidence intervals associated with the asymptotic DP (a) and parametric (b) estimates 
for a sample of size 100. The vertical line represents the theoretical Dykstra-Parsons coefficient. 
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Figure 2. Asymptotic cumulative probability distribution of the Dykstra-Parsons coefficient and 
the corresponding empirical cdf for 1000 simulations of sample sizes of 100 (a) and 400  (b).  
 

 
VII. Conclusions 
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This paper presents the development of an asymptotic distribution of the Dykstra-Parsons 
coefficient that is independent of the permeability probability distribution. The effectiveness (bias 
and confidence intervals) of the proposed approach is demonstrated by comparing the results 

those obtained using the classical method, and well-known methods (e.g., Jensen and Currie), 
under different scenarios of reservoir maturity levels (i.e., number of wells), and degree violations 
of the log-Normal probability density function assumption based on the p-value of Lilliefors tests.  
 
The results show that in the vast majority of the case studies independently of whether or not the 
log-Normal probability density function assumption holds (with α=5%), the proposed approach 
outperformed previously reported methods, in particular, resulted in a significant reduction of the 
bias and, with confidence intervals always including the estimated DP coefficient. In addition, an 
excellent agreement was observed between the asymptotic cumulative distribution of the DP 
coefficient and the corresponding empirical distribution for sample sizes as low as 100, which 

allows classifying reservoirs according to their DP coefficient with high success rates.    
 

 
 

Figure 3. Average probability of an asymptotic Dykstra-Parsons coefficient higher than 0.7 (Case 
study) 
 

 
The asymptotic distribution of the Dykstra-Parsons coefficient can be easily implemented as a 
computational aid and has the potential to be successfully incorporated in the workflow of 
reservoir engineers for quantifying/classifying reservoir heterogeneity without making any 
assumptions about the permeability probability distribution.    
 

References 

 

Cramer, H. [1999]. Mathematical methods of statistics. Princeton University Press. USA. 19th 
Edition.  

Dykstra, H. and Parsons, R.L. [1950] The prediction of oil recovery by water flood, American 
Petroleum Institute, Secondary Recovery of Oil in the United States, second edition, API, Dallas, 
160-174. 

Goggin, D.J., Chandeler, M.A., Kocurek, G., and Lake, L.W. [1986] Patterns of permeability in 
eolian deposits,  SPE 14893, SPE/DOE 5th Symposium on  EOR, Tulsa,  297-306. 



 

 
 
 

 

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,  

8 - 11 September 2008 

Jensen, J.L., Lake, L.W. and Hinkley, D.V. [1985] A statistical study of reservoir permeability: 
distributions, correlations and averages. SPE 14270, The 60th SPE Annual Technical Conference 
and Exhibition, Las Vegas, 461-468. 

Jensen, J.L. and Lake, L.W. [1986] The influence of sample size and permeability distribution on 
heterogeneity measures. The 61st SPE Annual Technical Conference and Exhibition, Paper SPE 
15434, Los Angeles. 

Jensen J.L. and Currie, I. [1990] A new method for estimating the Dykstra-Parsons coefficient to 

characterize reservoir heterogeneity, SPE 17364, SPE Reservoir Engineering, 3(7), 369-374. 

Lake L.W. and Jensen, J.L. [1989] A review of heterogeneity measures used in reservoir 
characterization, SPE 20156-MS. 

Lambert, M.E. [1981]: A statistical study of reservoir heterogeneity, MS Thesis, University of 
Texas at Austin.  


