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Abstract Surrogate-based optimization (SBO) for engi-
neering design, popular in the optimization of com-
plex engineering systems (e.g., aerospace, automotive,
oil industries), proceeds in design cycles. Each cycle
consists of the analysis of a number designs, the fit-
ting of a surrogate, optimization based on the sur-
rogate, and exact analysis at the design obtained by
the optimization. However, due to time and cost con-
straints, the design optimization is usually limited to
a small number of cycles each with substantial number
of simulations (short cycle SBO) and rarely allowed to
proceed to convergence. This paper takes a first step
towards establishing a statistically rigorous procedure
for assessing the merit of investing in another cycle of
analysis versus accepting the present best solution. The
proposed approach assumes that the set of locations for
the next cycle is given, and it relies on: (1) a covari-
ance model obtained from available input/output data,
(2) a Gaussian process-based surrogate model, and
(3) the fact that the predictions in the next cycle are
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a realization of a Gaussian process with a covariance
matrix and mean specified using (1) and (2). Its effec-
tiveness was established using descriptive and inference
statistical elements in the context of a well-known test
function and the optimization of an alkali-surfactant-
polymer flooding of petroleum reservoirs.
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1 Introduction

Surrogate based optimization (SBO) of computation-
ally demanding simulation-based models has become
very popular over the last decade (see Simpson et al.
2002; Li and Padula 2004; Queipo et al. 2005; Wang
and Shan 2007). A typical SBO constructs the surrogate
based on a number of simulations, estimates the opti-
mum design based on the surrogate, and then performs
an exact simulation at that estimated position (check-
ing phase). This constitutes one cycle. The process is
then repeated until resources run out or convergence
is established. There has been much progress recently
in developing SBO methods with proven convergence
(see Rodriguez et al. 1998; Alexandrov 1998), and
in the SBO under uncertainty for robust design and
reliability-based design optimization as evidenced in
the DAKOTA and i-SIGHT optimization frameworks
(see Wojtkiewicz et al. 2001; Eldred et al. 2002; Padula
et al. 1999; Koch and Gu 2001). However, in many ap-
plications, the availability of parallel computation
allows us to generate multiple simulations and time lim-
itations dictate a small number of cycles (see Kageyama
et al. 2001; Zerpa et al. 2005).
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The current frontier of surrogate-based engineer-
ing design lacks statistically rigorous procedures for
assessing the merit of investing in another cycle of
analysis versus accepting the present best solution
(PBS). Previous works differ in the infill measure,
such as, probability of improvement (PI), and expected
improvement (EI), whether the additional cycle in-
cludes a single or multiple points, and on the stopping
criteria.

Jones et al. (1998) pioneered the use of EI and
stopped the search when the maximum EI was less
than 1% of the present best solution. Sasena et al.
(2002) compared alternative infill sampling plans using
a generalized EI measure while stopping the cycles
after a fixed number of objective function evaluations.
Sobester et al. (2005) used a weighted EI criterion and
also limited the cycles to a fixed number of objective
function evaluations. Huang et al. (2006) presented a
so called augmented EI to address stochastic black box
systems and used as stopping criterion a tolerance for
the ratio between the maximal EI and the active span
of the responses.

Alternatively, Apley et al. (2006) in the context of
robust design gave guidelines for additional cycles de-
pending on whether or not the analytical prediction
intervals for potential designs overlapped. Forrester
and Jones (2008) proposed an EI measure with no
user defined parameters and stopped the cycles after a
particular target is reached. These works consider the
deployment of a single point in each additional cycle.
In contrast, clustered approaches for the deployment of
multiple points in additional cycles were conducted for
PI (Jones 2001) and generalized EI (Ponweiser et al.
2008); the former did not specify an stopping crite-
rion while the latter used a fixed number of objective
function evaluations. Using a fixed number of cycles
Ginsbourger et al. (2007) gave results for both EI and
PI as infill sampling criteria also allowing for multiple
points in each additional cycle; two heuristics were used
for the EI calculations.

The PI and EI infill measures, as discussed in Jones
(2001), have their strengths and limitations; in par-
ticular, the PI when coupled with optimization algo-
rithms (searching for points maximizing probability of
improvement), the iterates can be shown to be dense
(under certain mild assumptions), and can naturally
balance local and global searches, but its performance
can be sensitive to the target specification. This latter
issue can be overcome by identifying PI estimates for
alternative targets or by using the target-free EI.

Note that no significant effort has been made to
assess the accuracy and statistical significance of the
infill measure estimates. This work alleviates this short-
coming providing rigorous statistical estimates of PI
(given the locations in the next cycle), and discusses
the accuracy and statistical significance of the cited
estimates using both analytical and industrial case
studies.

The Gaussian processes (GP) perspective to surro-
gate modeling has a long history in the field of statistics
and will prove to be useful in this context. Just as a
Gaussian distribution is specified by its mean and a
covariance matrix, a Gaussian process is specified by
a mean and a covariance model; here, the mean is
a function of the location in the model input space,
and the covariance is a function expressing how cor-
related the model output values are at two locations.
GP are frequently used for problems of regression (e.g.,
kriging) and classification and are closely related to
a variety of surrogate modeling approaches including
neural networks (see Neal 1996), kriging (see Cressie
1993; Chiles and Delfiner 1999), generalized radial basis
functions (see Poggio and Girosi 1989), and kernel
methods (see Lowe 1995). Rasmussen (see Rasmussen
1996) conducted a comparison of GP regression with
several other state of the art methods on a number of
problems and, in general, found its performance com-
parable or superior to most methods. A comparison
of GP modeling versus the response surface method is
available in Hollingsworth and Mavris (2003).

This paper presents a methodology to address an
important step in the decision whether to undertake
another cycle. This step is calculating the probability
of improving the present best solution beyond a target
at a given set of points. The issues of how to select
this set of points, and how to account for additional
improvement at the optimum based on the updated
surrogate are not addressed. The methodology for this
step relies on three components: (1) a covariance model
(structure and parameters) obtained from available
input/output data, (2) a Gaussian process-based surro-
gate model, and (3) the fact that the predictions in the
next cycle are a realization of a Gaussian distribution
with a covariance matrix and mean specified using
(1) and (2). The methodology is validated using a well-
known analytical test function (i.e., F1), and evalu-
ated in the surrogate-based modeling of a field scale
alkali-surfactant-polymer (ASP) enhanced oil recovery
(EOR) process. ASP flooding is the most promising
EOR solution for one of the greatest challenges facing
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the oil industry worldwide: after conventional water
flooding the residual oil (drops trapped by capillary
forces) in reservoirs around the world is likely to be
around 70% of the original oil in place (see Dosher and
Wise 1976; Lake 1989).

The remainder of the paper is structured as fol-
lows: problem statement (Section 2), solution approach
(Section 3), evaluation strategy (Section 4), case stud-
ies (Section 5), results and discussion (Section 6), and
summary and conclusions (Section 7).

2 Problem statement

In the context of surrogate-based optimization, given a
surrogate model (built from a set of training points),
an exact simulation at the surrogate-based optimum
(a cycle); if another cycle is undertaken, what is the
probability of improving the present best solution (PBS)
beyond a given target at one or more of arbitrary given
prediction sites? This problem is a key building block to-
ward answering the more general question of whether
or not an additional cycle should be undertaken in
surrogate-based optimization. This more general ques-
tion would require finding the set of locations that
maximize the probability of improvement and deciding
whether or not to conduct another cycle based on the
outcome of the optimization procedure and the simu-
lation at the point predicted by the surrogate. As an
illustration of the problem of interest, Fig. 1 shows a

Prediction Sites

Fig. 1 A Kriging-based model of the F1 test function with a
set of five prediction sites where the probability of improving a
specified target is sought

kriging-based model of a test function (i.e., denoted as
F1), a set of prediction sites, the present best solution,
and a target-T. Given a probability estimate we also
need to establish the accuracy and statistical signifi-
cance of the probability of improvement estimates.

Under a GP perspective (see Cressie 1993; Sacks
et al. 1989; Williams 1998), the problem of interest can
be mathematically formulated as follows. Considering
Z = (Z t, Zp)

T and Cov(Z ) = (�tt,�tp; �pt, �pp), the
points in the next cycle in surrogate-based optimization
can be seen as a realization of the following Gaussian
distribution (see Rao 2002) with μ being the process
mean value:

N Zp|Z t

{
μ +

∑
pt

∑ −1
tt (Z t − μ) ,

∑
pp −

∑
pt

∑ −1
tt

∑
tp

}
(1)

where: Z t denotes training points plus the exact simula-
tion at the surrogate-based optimum (checking phase),
Zp represents prediction data (output) sets, � specify
the covariances of the components in vectors Zp and
Z t, and NZp|Z t is a multivariate normal distribution
representing the conditional probability distribution of
Zp given Z t. Note that the terms in brackets represent
the conditional mean at the prediction sites and the
conditional covariance matrix of Zp given Z t, respec-
tively. The components in the variance and covariance
matrices (denoted by �) can be calculated by iden-
tifying a covariance function using the input/output
training data (Xt, Z t); the general form of the covari-
ance function expresses the idea that nearby inputs
will have highly correlated outputs. The GP perspective
can be extended to account for scenarios where the
conditional mean at the prediction sites is estimated
using a variety of surrogate modeling approaches while
preserving the conditional covariance matrix of Zp

given Z t (1).
In this context, the problem of interest is then to

calculate the probability that a target T can be met
or surpassed by at least one of the components of Zp

given a set of training points in Z t and exact simulation
(checking phase) and to assess the accuracy and sta-
tistical significance of the probability of improvement
estimates.

3 Solution approach

Given the previously cited GP perspective, the solution
approach relies on three components: (1) a covari-
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ance model (structure and parameters) obtained from
available input/output data (this issue is discussed at
the end of this section), (2) a Gaussian process-based
surrogate model such as those provided by kriging, and
(3) an arbitrary set of P prediction sites and a target (T)
corresponding to the next cycle in the surrogate-based
optimization. Having specified the Gaussian process
(i.e., through its mean and covariance matrix), the prob-
ability of interest, that is, the probability of having at
least one of the prediction sites (Zpj) below the given
target, can be calculated as:

Prob
(
at least Zpj < T |Z t

) = 1 − Prob
(
Zp > W |Z t

)

(2)

where W is a vector with dimension equal to P and
with all its values equal to the target T, that is, W =[

T T . . T
]t

.
Furthermore, a GP is a stochastic process for which

any finite set of outputs (e.g., predictions) has a joint
multivariate Gaussian distribution. Hence, consider-
ing the symmetry of the multivariate Gaussian density
function with respect to its mean value μ (Fig. 2), we
can write:

Prob
(
Zp > W |Z t

) = Prob
(
Zp ≤ 2μ − W |Z t

)
(3)

This transformation is required because we can com-
pute the right hand side of the previous equation using
well known algorithms for evaluating Gaussian cumu-
lative probability distributions in high dimensions (See
Genz 1993).

More precisely, the solution approach includes the
following steps:

1. Construct vector Z t from the training data. It in-
cludes the output values in the data used to con-
struct the surrogate model

∝
w

(          )ZtWZpob >Pr

Zt)WZpob  μ2Pr

Zp
1

Zp
2

μ

t= 2μ−w

w

ZtWob >Pr

(ob − 2

Symmetry

≤

Fig. 2 An illustration of how to estimate Prob (Zp > W|Z t)

in (2) using multivariate normal cumulative distributions

2. Identify a covariance model for the Gaussian
process using the training data (Xt, Z t). This issue
will be fully discussed later in this section

3. Using the covariance model identified in Step 2,
calculate the covariance matrices denoted as: �tt,
�tp, �pt, �pp

4. Compute the conditional covariance matrix of Zp

given Z t, that is:
∑

pp

∣∣∣ Z t =
∑

pp−
∑

pt ·
∑ −1

tt ·
∑

tp (4)

5. Create a mean vector μ̂ equal to the surrogate
model predictions at the P prediction sites; in the
case of simple kriging (assuming a trend equal to
zero) the mean vector can be expressed as:

μ̂ = μ +
∑

pt ·
∑ −1

tt · (Z t − μ) (5)

In other forms of kriging, the mean at any predic-
tion site would be the trend value at that location.

6. Establish a desired target T whose probability of
improving in the next cycle is sought and construct
a vector W = [

T T . . T
]t

with dimension equal to
P and components with values equal to T

7. Compute the symmetric vector s with respect to
W as:

s = 2μ̂ − W (6)

8. Compute the value of the multivariate normal cu-
mulative distribution function-CDF corresponding
to vector s, namely (Fig. 2): Prob

(
Zp ≤ s|Z t

)
9. Calculate the probability of interest as ((2) and (3)):

Prob
(
at least Zpj < T|Z t

) = 1 − Prob
(
Zp ≤ s|Z t

)

(7)

3.1 Covariance model identification

Identification in this context means to establish the
structure and parameters of the covariance function. As
frequently done in the context of surrogate modeling,
we assume the GP to be stationary in which case the
covariance function Cov(z, z’) is only a function of the
vector h = x − x’, namely, Cov(h). The use of such
covariance functions is appealing since it makes the
prediction invariant under shifts of the origin in the
input space, and greatly simplifies the covariance model
identification.

From a modeling point of view, we wish to specify
a covariance function with a structure that embodies
our assumptions about the problem (for example that is
smooth and continuous). The cited function expresses



Assessing the value of another cycle in Gaussian process surrogate-based optimization 463

the idea that nearby inputs will have highly correlated
outputs with some parameters (θ) allowing a different
distance measure for each input dimension. In addition,
we are required to specify a function that will generate
positive definite covariance matrices for any set of input
points.

One commonly used covariance function for inputs
in Rn is:

cov
(
z, z′) = σ 2

z · R
(
θ, x, x′) (8)

where σ 2
z is a scale factor and R

(
θ, x, x′) is a correlation

function:

R
(
θ, x, x′) =

n∏
j=1

R j

(
θ, x j − x′

j

)
(9)

This is simply the product of n correlation functions
with a set of parameters θ . Table 1 shows commonly
used correlation functions; note that the correlation
function does not have to be “Gaussian” and that the
parameters model different smoothness behavior in
each dimension.

Once the covariance function structure has been
set, the parameters can be estimated using the training
data. There are several approaches for achieving this
purpose: (1) maximum likelihood estimates-MLE (see
Williams 2002), (2) cross validation (CV), and gen-
eral cross validation (GCV) methods, as discussed in
Wahba (1990), and (3) through variogram modeling
(see Cressie 1993). In particular, the MLE approach
consists of finding the set of covariance parameters
that maximize the log likelihood of the training vector
Z t; the maximum of the likelihood can be estimated
using standard optimization routines. The evaluation of
the likelihood and its partial derivatives takes O(n3)

operations unless a special structure in the problem
can be exploited and can be a difficult problem in high
dimensions; approximate methods such as that pro-
posed by Vecchia (1998) have been shown to be useful
in such scenarios. A more robust approach for covari-
ance function identification can be made through the so
called variogram modeling process from geostatistics.

Table 1 Commonly used correlation functions

Name R
(
θ, x j − x′

j

)

Exponential exp
(
−θ j ·

∣∣∣x j − x′
j

∣∣∣
)

Gaussian exp

(
−θ j ·

∣∣∣x j − x′
j

∣∣∣
2
)

Exponential – exp

(
−θ j ·

∣∣∣x j − x′
j

∣∣∣
θn+1

)
, 0 < θn+1 ≤ 2

Gaussian

This approach has been limited to low dimensional
problems, and extensions to high dimensional prob-
lems are not obvious. In any event, there is empirical
evidence that even somewhat crude MLEs can lead
to useful predictions and quantifications of uncertainty
(see Sacks et al. 1989).

4 Evaluation strategy

Multiple (N) experiments are conducted to establish
the statistical significance of the results of the proposed
approach. For each experiment an additional set of P
simulations is conducted and the probability of improv-
ing a given target (at the set of P additional locations)
is estimated. A successful experiment means that the
results of the simulation is below the target T in at least
one of the P prediction sites. Then, the goodness of the
proposed solution approach is evaluated by:

1. Comparing probabilities of improvement against
observed events. Specifically:

(a) Relative frequency of successful experiments
vs. average probabilities of improvement

(b) Average probabilities of improvement as-
sociated with successful and unsuccessful
experiments.

(c) Set of instances with probabilities of improve-
ment above average vs. set of instances asso-
ciated with successful experiments.

2. Through a statistical test, check whether the
probabilities of improvement associated with the
N experiments are consistent with the observed
outcomes.

Note that in the statistical test specified in 2, the N ex-
periments (successful/unsuccessful) can be modeled as
the realization of a Generalized Binomial Distribution
(GBD) and be the subject of a statistical hypothesis test
with α = 0.05 significance level. The random variable
for the hypothesis test corresponds to the number of
successful events. The adopted model is justified since:
(1) the experiments can be considered either success-
ful (1) or unsuccessful (0), (2) the experiments are
independent, and (2) each experiment has a different
probability of success attached to it (in contrast to a
constant probability that leads to the standard Binomial
distribution).

The statistical test is conducted assuming as a null
hypothesis H0 that the parameters of the GBD are
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the probabilities of improvement associated with the N
experiments, and through the following steps:

1. Establish the value k of the random variable X
counting the number of successful experiments.

2. Given the probabilities of improvement (p1..N) es-
tablish the corresponding GBD. As an example,
Fig. 3a illustrates the probability of improvement
for each experiment in a set of 50 experiments, and
the Fig. 3b the GBD associated with those probabil-
ities. The probabilities for individual experiments
vary from 0.1 to 0.4, and the most probable number
of successful experiments is 12. The GBD distrib-
ution then assesses the probability of observing k
successful experiments in a set of N experiments
given the probability of success (improvement) for
each experiment

3. Determine the p-value corresponding to the ob-
served value k. The p-value is the probability of
observing a number of successful experiments as
extreme as k given that the null hypothesis H0 pre-
viously cited is true; H0 states that the parameters
of the GBD are the probabilities of improvement
associated with the N experiments. For example,

considering the Generalized Binomial probability
distribution depicted in Fig. 3b, for k = 9 the
p-value is 0.34 and is calculated as twice (two-sided
test) the sum of the probabilities of improvement
associated with number of successful experiments
lower or equal to 9. For a value of k on the other
side of the mean of the distribution (e.g., 15) the
same calculation is made but for a number of suc-
cessful experiments higher or equal than k

4. If the calculated p-value is greater than the se-
lected significance level (α = 0.05) then the null
hypothesis cannot be rejected, and the observed
experiments are declared consistent with the prob-
abilities of improvement calculated using the pro-
posed approach. For the example in Fig. 3, for the
selected significance level of 0.05, the minimum and
maximum number of successful experiments that
will satisfy this test are 7 (p-value = 0.09) and 18
(p-value = 0.05), respectively.

Note that the statistical test specified in 2 represents an
inference made about the population (of more general
value) and goes beyond descriptive statistics.

Fig. 3 Illustration of
(a) probability of
improvement for a set of
fifty (50) experiments;
(b) probability of
experiencing k successful
experiments considering
a Generalized Binomial
distribution with the
probabilities of
improvements specified
in (a) and the p-value
associated with the observed
result (k = 9)
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5 Case studies

This section describes the analytical case study
(F1 test function) and the industrial case study
(Alkali-Surfactant-Polymer enhanced oil recovery
optimization—see Zerpa et al. 2005) used to evaluate
the proposed solution methodology.

5.1 F1 Test function

This test function (Fig. 4) is expressed as:

f (x, y) = (30 + x sin (x)) · (4 + exp
(
y2

))
(10)

Input space range: x ∈ [0, 9] and y ∈ [0, 6]
There will be 50 experiments in two different scenar-

ios; that is, N = 50 different Latin hypercube designs
with 17 (16 + 1) training/checking points, and P = 5
prediction sites (scenario I) and 33 (32 + 1) training/
checking points, and P = 5 prediction sites (scenario
II). The target is made equal to the present best so-
lution in each training set, minus 10% of the differ-
ence between the present best solution and the global
optimum of the function (100.74). Each experiment is
characterized by its probability of improvement and an
indication of whether or not a successful experiment is
observed.

5.2 Alkali-surfactant-polymer (ASP) optimization

In order to increase oil recovery, oil reservoirs may
be flooded by a mix of chemicals such as alkali,

Fig. 4 F1 test function (F1 case study)

surfactant and polymer. The problem of interest is to
find the values of the design variables, namely, concen-
tration of alkaline, surfactant and polymer, and ASP
slug size (expressed in the form of the injection time)
that maximize the cumulative oil production over a
time horizon. The ranges of the design variables are
presented in Table 2. The cumulative oil production is
calculated at 487 days using the UTCHEM reservoir
simulator (Pope and Nelson 1978; Engelsen et al. 1987),
and it is expressed as percentage of the original oil in
place (OOIP).

The UTCHEM program is a three-dimensional, mul-
tiphase, multicomponent reservoir simulator of chemi-
cal flooding processes developed at the University of
Texas at Austin. The basic governing differential equa-
tions consist of: a mass conservation equation for each
component, an overall mass conservation equation that
determines the pressure (the pressure equation), an
energy balance, and Darcy’s Law generalized for mul-
tiphase flow. The resulting flow equations are solved
using a block-centered finite-difference scheme. The
solution method is implicit in pressure and explicit
in concentration, similar to the well-known IMPES
method used in black oil reservoir simulators. A Jacobi
conjugate gradient method is used to solve the system
of finite difference equations resulted from the dis-
cretization of the pressure equation.

As illustrated in Fig. 5, the ASP flooding pilot has
an inverted five-spot pattern and a total of 13 vertical
wells, among those, nine of those wells are oil producers
and four of them are ASP injectors. The reservoir is
at a depth of 4,150 ft., has an average initial pressure
of 1,770 psi, and its porosity is assumed to be constant
throughout the reservoir and equal to 0.3. The OOIP is
395,427 bbl, the crude oil viscosity is 40 cp, the initial
brine salinity is 0.0583 meq/ml and the initial brine
divalent cation concentration is 0.0025 meq/ml. This is
the reference configuration whose details can be found
in the sample data archives of the UTCHEM program.

Three flowing phases and 11 components are con-
sidered in the numerical simulations. The phases are

Table 2 Design variable restrictions—ASP optimization

Design variable Range Units
Min. Max.

Alkaline concentration 0 0.5898 meq/ml
(Na2CO3)

Surfactant concentration 0.001815 0.01 Vol. fract.
Polymer concentration 0.0487 0.1461 wt.%
Injection time 111 326 Days
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Fig. 5 Well pattern illustration (ASP modeling case study)

water, oil and microemulsion, while the components
are water, oil, surfactant, polymer, chloride anions,
divalent cations (Ca++, Mg++), carbonate, sodium,
hydrogen ion, and oil acid. The ASP interactions are
modeled using the reactions: in situ generated surfac-
tant, precipitation and dissolution of minerals, cation
exchange with clay and micelle, and chemical adsorp-
tion. Note the detailed chemical reaction modeling, and
the heterogeneous and multiphase petroleum reservoir
under consideration.

Again, there will be 50 experiments; in this case,
(50) different Latin hypercube designs with 42 (41 + 1)
training/checking points, and P = 10 prediction sites.
The target is made equal to the best solution in the
training set. Note that in both case studies the targets
have been modestly set so that we improve our chances
of observing improvements with a rather limited num-
ber of experiments.

In all instances, the selected Gaussian process-based
surrogate modeling was ordinary kriging. The modeling
was conducted using the Matlab toolbox developed
by Lophaven et al. (2002) with a Gaussian correla-

Table 4 Calculated average probabilities of improvement for
successful and unsuccessful experiments

Objective Average probability Average probability
function of successful of unsuccessful

experiments experiments

F1 (16 + 1) 0.63 0.08
F1 (32 + 1) 0.68 0.03
ASP (41 + 1) 0.70 0.11

tion function and parameters identified using maximum
likelihood principles. The surrogate-based optimization
associated with the checking phase was conducted using
the DIRECT (Dividing RECTangles) global optimiza-
tion algorithm, a modified Lipschitzian method, devel-
oped by Jones et al. (1993).

6 Results and discussion

Table 3 presents the relative frequency of successful
experiments (at least one of the prediction sites below
target) vs. the calculated average probabilities of im-
provement for each of 50 experiments in the different
case studies, namely: F1 (16 + 1), F1 (32 + 1) and ASP
(40 + 1). In the analytical case studies, the agreement
is excellent, while in the industrial case study, the ob-
served difference is probably due to the small size of
the training data given the number of input variables.

Table 4 shows the calculated probabilities of
improvement associated with successful and unsuccess-
ful experiments. The average probabilities of improve-
ment associated with successful experiments are higher
than 0.6 for the successful experiments and lower than
0.15 for the unsuccessful ones, with even better results
(0.63 vs. 0.68; 0.08 vs. 0.03) for a higher sample size in
the case study F1(16 + 1) vs. F1(32 + 1).

Table 5 displays the set of instances with calculated
probabilities of improvement above and below a 0.5
probability threshold versus the set of successful and
unsuccessful experiments for the three case studies un-
der consideration. It is clear that, in all instances, almost
all the elements in the set of unsuccessful experiments

Table 3 Relative frequency
of successful experiments
and calculated average
probabilities of improvement
for the different case studies

Objective Successful Unsuccessful Relative frequency of Average probability
function experiments experiments successful experiments of improvement

F1 (16 + 1) 9 41 0.18 0.18
F1 (32 + 1) 4 46 0.08 0.08
ASP (41 + 1) 3 47 0.06 0.15
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Table 5 Set of instances with
calculated probabilities of
improvement above and
below 0.5 vs. set of successful
and unsuccessful experiments

Successful Unsuccessful Marginal
experiments experiments totals

F1 (16 + 1)
Experiments with probability above 50% 5 2 7
Experiments with probability below 50% 4 39 43
Marginal totals 9 41

F1 (32 + 1)
Experiments with probability above 50% 3 1 4
Experiments with probability below 50% 1 45 46
Marginal totals 4 46

ASP (41 + 1)
Experiments with probability above 50% 3 0 3
Experiments with probability below 50% 0 47 47
Marginal totals 3 47

had probabilities of improvement below the 0.5 proba-
bility threshold; namely, 39/41, 45/46, and 47/47 for the
F1(16 + 1), F1(32 + 1), and, ASP (40 + 1), respectively.
Similarly, for the F1(32 + 1), and, ASP (40 + 1) case
studies almost all the elements in the set of successful
experiments had probabilities of improvement above
the 0.5 probability threshold; namely, three fourths and
three thirds, respectively.

A statistical measure of the goodness of the results in
Table 5 is the balanced error rates (BER), which is the
average of the relative errors in predicting successful
and unsuccessful events. For example, for the F1 (16+1)
case study the BER is equal to 0.5 × (4/9 + 2/41) = 0.24.
In general, the BER is in the range of approximately
13.5% to 24% for the analytical cases and 0% for the
more complex industrial one. Note that better results

Fig. 6 Probability of
improvement vs. actual
improvement for each of
the 50 experiments in all
case studies; a F1 case
study—(16 + 1), b F1 case
study—(32 + 1) and
ASP case study—(41 + 1)
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(13.5% vs. 24%) are obtained for the analytical case
study with a higher sample size. In the industrial case
study, the BER is equal to 0, even though the average
probability of improvement and the relative frequency
were on the same order of magnitude but different
(0.15 vs. 0.06). The BER = 0 condition only reflects
the fact that all successful (unsuccessful) experiments
had probability of improvement above (below) the se-
lected threshold and can have associated very different
average probability of improvement scenarios. So far in
Table 5 we evaluate the prediction performance of the
proposed approach using a 0.5 probability threshold.
The probability threshold was not set to optimize the
results. The optimal probability threshold for deciding
whether or not to conduct another cycle is difficult
to establish. While a 50% probability threshold seems
like a natural choice, the threshold should be selected
based on the designer’s risk attitude (aversion, neutral,
seeking) and the cost in time and resources of carrying
another cycle. In addition, the results may be sensi-
tive to alternative covariance functions; however, when
using an exponential covariance function in the F1
(16 + 1) case study, the balanced error rate (BER) was
also quite good (8%).

Note that this study has focused on assessing the
value (probability of improvement) of another cycle.
It does not depend on the sampling scheme for the
additional cycle in SBO, and no particular effort was
made on selecting the prediction sites for optimization.
Figure 6 shows the positive relationship between prob-
ability of improvement and actual improvement for
all case studies with the relative improvements in the
analytical and industrial case studies up to 1% and 5%,
respectively. While the improvements in the analytical
case studies may seem modest, they correspond on
average to 48.21% of the maximum theoretically pos-
sible (average target 101.30, average optimum 101.01,
and optimum value 100.74). In more general scenarios,
achieving higher relative improvements is possible if
the target and optimum value are significantly apart and
an optimization strategy and sampling scheme for the
additional cycle is in place.

What follows are the results of the statistical hypoth-
esis tests described in “Section 4” where an inference
is made about the population and hence goes beyond
the descriptive statistics obtained using experiments.
Figures 7, 8 and 9 show how in all instances the p-
values exceed the 5% significance level and hence the

Fig. 7 a Calculated
probability of improvement
for each of the 50
experiments; b probability
of experiencing k successful
experiments and the p-value
associated with the observed
result (k = 9)—F1 case
study (16 + 1)
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Fig. 8 a Calculated
probability of improvement
for each of the 50
experiments; b probability
of experiencing k successful
events and the p-value
associated with the observed
result (k = 4)—F1 case
study (32 + 1)
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Fig. 9 a Calculated
probability of improvement
for each of the 50
experiments; b probability
of experiencing successful
events and the p-value
associated with the observed
result (k = 3)—ASP case
study (41 + 1)
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calculated probabilities of improvement are considered
to be consistent with the experimental results. In partic-
ular, the analytical test cases exhibited p-values above
80%.

Detailed results of the experiments for each of the
case studies can be found in the Appendix.

7 Summary and conclusions

This paper presented an approach based on the
Gaussian process (GP) perspective for evaluating the
probability of improvement beyond a target T given
a design of experiments for the next cycle. This is a
key step in the decision weather to undertake another
cycle or accept the present best solution (PBS). The GP
perspective to surrogate modeling has a long history in
the field of statistics, is frequently used for problems of
regression (e.g., kriging) and classification and is closely
related to a variety of surrogate modeling approaches
including neural networks, kriging, generalized radial
basis functions, and kernel methods.

The proposed approach relies on three components:
(1) a covariance model (structure and parameters) ob-
tained from available input/output data, (2) a Gaussian
process-based surrogate model such as kriging, and
(3) the fact that the predictions in the next cycle are
a realization of a Gaussian process with a covariance
matrix and mean specified using (1) and (2).

The effectiveness of the approach was demonstrated
using both descriptive and inference statistics when
applied to an analytical case study with two sample sizes
and to the surrogate-based optimization of an Alkali-
Surfactant-Polymer process, and holds promise to be
effective in broader contexts.

Pending issues include extensions to popular alter-
native surrogate modeling schemes such as polynomial
regression, and support vector regression, sound proce-
dures for setting reasonable targets, and the coupling
of the proposed approach with formal optimization
strategies for selecting the prediction sites in surrogate-
based optimization.
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Table 7 Results of the different experiments for the F1 case study—(33 training points and five test locations)

No φ1 φ2 μ σ p T B ymin T– ymin (T- ymin) / |T|
1 0.11 0.13 141.96 946.90 0.00 100.77 0 102.28 −1.51 −0.015
2 0.13 0.12 142.25 1,079.40 0.00 100.89 0 109.67 −8.78 −0.087
3 0.26 0.19 130.03 348.45 0.00 100.89 0 107.29 −6.40 −0.063
4 0.18 0.09 138.10 719.95 0.00 100.74 0 101.55 −0.81 −0.008
5 0.14 0.16 136.34 621.63 0.00 100.75 0 114.95 −14.20 −0.141
6 0.10 0.12 126.50 1,034.09 0.23 101.01 1 100.79 0.22 0.002
7 0.20 0.16 134.64 393.46 0.07 101.11 0 104.62 −3.51 −0.035
8 0.13 0.11 135.97 673.49 0.00 100.78 0 112.54 −11.76 −0.117
9 0.10 0.09 134.17 1,934.99 0.00 100.79 0 108.75 −7.96 −0.079
10 0.20 0.21 128.73 301.56 0.00 100.77 0 103.27 −2.50 −0.025
11 0.12 0.14 136.33 911.48 0.00 100.84 0 110.68 −9.84 −0.098
12 0.13 0.11 138.99 986.25 0.30 100.92 0 101.17 −0.25 −0.002
13 0.14 0.12 134.09 646.80 0.05 100.75 0 101.47 −0.72 −0.007
14 0.14 0.16 134.54 631.26 0.00 101.36 0 103.26 −1.90 −0.019
15 0.10 0.15 134.80 1,028.39 0.00 100.83 0 113.57 −12.74 −0.126
16 0.11 0.11 142.14 977.63 0.00 100.93 0 111.42 −10.49 −0.104
17 0.11 0.18 132.52 729.15 0.00 100.98 0 112.29 −11.31 −0.112
18 0.16 0.14 133.68 422.90 1.00 101.66 1 100.91 0.75 0.007
19 0.10 0.13 135.52 1,021.26 0.00 100.91 0 120.58 −19.67 −0.195
20 0.15 0.09 141.45 773.68 0.00 100.97 0 103.69 −2.72 −0.027
21 0.09 0.10 138.88 1,514.68 0.00 100.87 0 102.56 −1.69 −0.017
22 0.11 0.13 136.92 779.14 0.18 100.78 0 100.80 −0.02 0.000
23 0.17 0.15 133.45 517.99 0.33 100.75 0 101.27 −0.52 −0.005
24 0.16 0.16 132.41 524.35 0.00 100.77 0 103.61 −2.84 −0.028
25 0.18 0.17 132.48 374.00 0.00 100.96 0 105.45 −4.49 −0.044
26 0.09 0.10 134.91 2,194.36 0.00 101.02 0 107.29 −6.27 −0.062
27 0.12 0.09 141.34 740.87 0.00 101.17 0 101.96 −0.79 −0.008
28 0.14 0.15 129.49 499.24 0.00 102.19 0 105.53 −3.34 −0.033
29 0.13 0.11 132.51 534.84 0.00 100.74 0 101.27 −0.53 −0.005
30 0.21 0.07 133.41 981.69 0.00 100.98 0 104.80 −3.82 −0.038
31 0.19 0.10 139.27 660.14 0.00 100.89 0 113.41 −12.52 −0.124
32 0.15 0.13 132.48 880.77 0.00 100.90 0 104.92 −4.02 −0.040
33 0.14 0.10 133.95 598.24 0.57 100.75 0 101.60 −0.85 −0.008
34 0.14 0.15 130.08 732.70 0.00 100.76 0 106.87 −6.11 −0.061
35 0.10 0.11 130.23 1,301.35 0.00 100.86 0 102.13 −1.27 −0.013
36 0.20 0.18 132.42 372.22 0.50 100.84 1 100.75 0.09 0.001
37 0.12 0.13 136.68 788.26 0.03 101.30 0 102.84 −1.54 −0.015
38 0.11 0.11 141.08 866.61 0.00 102.24 0 109.94 −7.70 −0.075
39 0.07 0.09 148.63 3,129.43 0.00 100.77 0 104.03 −3.26 −0.032
40 0.10 0.11 149.11 1,564.48 0.00 101.15 0 110.52 −9.37 −0.093
41 0.11 0.14 137.58 809.37 0.00 100.88 0 104.00 −3.12 −0.031
42 0.12 0.14 135.64 661.75 0.00 100.75 0 103.57 −2.82 −0.028
43 0.13 0.14 131.99 580.19 0.00 100.88 0 104.75 −3.87 −0.038
44 0.19 0.14 135.87 482.97 0.00 102.24 0 111.51 −9.27 −0.091
45 0.14 0.12 138.72 578.04 0.00 101.29 0 105.28 −3.99 −0.039
46 0.16 0.14 100.01 800.23 0.00 101.03 0 101.90 −0.87 −0.009
47 0.13 0.20 140.87 400.13 0.00 108.28 0 109.19 −0.91 −0.008
48 0.12 0.14 137.08 861.71 1.00 101.24 1 100.75 0.49 0.005
49 0.27 0.10 135.12 451.71 0.00 101.85 0 113.13 −11.28 −0.111
50 0.15 0.16 136.37 518.85 0.00 100.82 0 102.83 −2.01 −0.020
Average probability 0.08 0.08
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Table 8 Results of the different experiments for the ASP case study—(41 training points and ten test locations)

No φ1 φ2 φ3 φ4 μ σ p T B ymin T- ymin (T– ymin) / |T|
1 0.00 0.15 1,327.85 0.00 −24.85 11.54 0.01 −34.19 0 −30.77 −3.42 0.100
2 0.00 40,659.42 2,616.62 0.00 −23.50 13.51 0.25 −33.65 0 −33.12 −0.52 0.015
3 17.45 0.01 0.19 119.86 −24.32 14.73 0.03 −34.66 0 −24.32 −10.34 0.298
4 0.08 1.91 504.84 0.01 −24.03 13.28 0.01 −34.05 0 −29.06 −5.00 0.147
5 0.18 1.48 1.59 11.78 −23.73 10.47 0.12 −30.99 0 −24.79 −6.19 0.200
6 61.64 0.48 0.06 0.00 −23.91 13.88 0.20 −31.58 0 −28.80 −2.78 0.088
7 61.40 0.00 0.02 0.13 −24.13 15.24 0.12 −33.19 0 −28.39 −4.80 0.145
8 0.00 1.43 543.21 0.27 −24.14 13.02 0.16 −31.25 0 −29.03 −2.22 0.071
9 0.03 2.27 2.62 169.40 −24.05 13.05 0.02 −34.34 0 −24.05 −10.29 0.300
10 48.06 0.01 7.52 3.09 −23.59 11.09 0.31 −29.60 0 −23.72 −5.88 0.199
11 7.22 0.01 1,463.86 0.00 −24.04 10.35 0.03 −31.89 0 −29.05 −2.83 0.089
12 0.00 0.00 60.35 0.78 −24.07 8.76 0.10 −30.62 0 −24.48 −6.15 0.201
13 45.88 0.06 0.01 0.02 −24.36 13.61 0.18 −30.76 0 −26.45 −4.31 0.140
14 1.99 1.78 0.08 37.95 −24.00 14.86 0.05 −33.73 0 −24.00 −9.73 0.288
15 80.06 0.12 318.10 0.00 −23.33 12.91 0.60 −32.29 1 −32.60 0.31 −0.010
16 1.99 1.78 0.08 37.95 −24.01 11.82 0.01 −34.60 0 −24.01 −10.59 0.306
17 0.00 3.95 67,952.16 0.00 −23.83 8.15 0.04 −29.56 0 −27.12 −2.44 0.083
18 0.00 2,772.76 985.98 0.00 −24.44 10.38 0.22 −30.20 0 −27.01 −3.20 0.106
19 1.99 1.78 0.08 37.95 −24.00 12.25 0.03 −33.69 0 −24.00 −9.69 0.288
20 1.38 1.31 0.30 5.61 −23.86 9.91 0.20 −30.23 0 −24.45 −5.78 0.191
21 13.23 3.22 269.37 0.00 −23.16 9.26 0.02 −31.09 0 −26.20 −4.89 0.157
22 0.00 134.13 263.20 0.04 −23.57 10.25 0.18 −30.88 0 −27.10 −3.78 0.122
23 1.23 16.02 2,014.59 0.00 −24.09 8.95 0.15 −30.40 0 −27.79 −2.61 0.086
24 0.00 11.35 1,626.07 0.01 −23.69 10.87 0.63 −30.97 1 −31.27 0.30 −0.010
25 2.62 2.27 0.03 169.40 −24.00 8.36 0.16 −30.08 0 −24.00 −6.08 0.202
26 1.66 1.53 0.16 14.85 −24.27 13.49 0.14 −33.38 0 −29.71 −3.67 0.110
27 17.45 0.01 0.19 119.86 −23.87 11.29 0.15 −31.01 0 −23.87 −7.14 0.230
28 16.58 9,565.86 824.54 0.00 −23.91 6.35 0.07 −30.58 0 −29.05 −1.52 0.050
29 1.58 1.47 0.19 11.48 −24.35 11.45 0.11 −31.90 0 −24.36 −7.54 0.236
30 0.03 2.27 2.62 169.40 −23.83 11.32 0.11 −31.52 0 −23.83 −7.69 0.244
31 0.00 0.04 597.22 0.01 −24.14 11.92 0.04 −32.76 0 −29.00 −3.76 0.115
32 0.00 4,373.66 1,574.19 0.00 −23.96 9.19 0.05 −32.17 0 −29.71 −2.46 0.076
33 682.33 24.27 0.06 0.00 −23.84 14.47 0.14 −32.04 0 −27.11 −4.92 0.154
34 0.02 72.01 2,954.19 0.00 −24.43 12.17 0.08 −31.78 0 −31.05 −0.72 0.023
35 1.99 1.78 0.08 37.95 −24.03 10.07 0.09 −31.51 0 −24.03 −7.48 0.237
36 9.06 0.08 0.03 133.12 −24.17 12.12 0.15 −31.58 0 −24.17 −7.41 0.235
37 1.99 1.78 0.08 37.95 −23.80 7.35 0.34 −28.60 0 −24.54 −4.06 0.142
38 2.62 2.27 0.03 169.40 −23.89 10.10 0.01 −33.33 0 −23.89 −9.45 0.284
39 4.23 3.39 0.01 2,094.73 −23.98 9.62 0.19 −30.33 0 −23.98 −6.35 0.209
40 2.12 1.89 0.06 54.15 −24.10 10.51 0.06 −32.32 0 −24.22 −8.10 0.251
41 0.03 52.42 395.32 0.04 −23.78 10.76 0.04 −31.67 0 −24.66 −7.01 0.221
42 0.00 23.07 22,017.16 0.00 −23.71 12.43 0.27 −31.50 0 −31.28 −0.22 0.007
43 0.00 17,432.39 2,546.31 0.00 −24.17 11.69 0.87 −30.62 1 −32.02 1.40 −0.046
44 1.66 0.17 0.16 14.85 −24.17 12.06 0.04 −33.17 0 −27.59 −5.58 0.168
45 1.99 1.78 0.08 37.95 −24.02 10.78 0.04 −32.64 0 −24.02 −8.61 0.264
46 1,207.98 0.00 0.22 1,396.28 −24.04 10.56 0.14 −31.07 0 −24.04 −7.03 0.226
47 9.06 0.08 0.03 133.12 −23.81 10.69 0.10 −31.28 0 −24.27 −7.01 0.224
48 1.58 1.47 0.19 11.48 −23.94 12.33 0.02 −34.26 0 −26.44 −7.82 0.228
49 1.81 214.68 0.00 0.05 −23.95 11.16 0.18 −30.98 0 −28.55 −2.42 0.078
50 0.70 10.73 814.59 0.00 −24.20 12.29 0.00 −35.46 0 −29.51 −5.95 0.168
Average 0.15 0.06

probability
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