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When constructing surrogate models, time/cost constraints make the designer frequently face the dilemma
of whether to use a small sample of data obtained from, for example, high fidelity/computationally expensive
computer simulations, or, a large one but with low fidelity values. More generally, variable fidelity samples
can be the result of: i) different physical/mathematical representations (e.g., inviscid/Euler versus viscous/
Navier–Stokes calculations), ii) alternative resolution models (e.g., fine/coarse grids), or, iii) experiments.
Ideally, surrogate models should allow: a) the integration of variable fidelity samples, and, b) provide
estimation and appraisal (error) information consistent with the amount and fidelity level of the available
data. While there have been significant progress in this area through deterministic modeling and
optimization approaches (e.g., correction surfaces, and space mapping), a spatial-stochastic perspective
such as those provided by the branch of spatial statistics known as geostatistics offers distinctive advantages
when satisfying the above referenced requirements (a and b). This paper discusses the effectiveness and
requirements of geostatistical methods such as classic and collocated cokriging for the integration of variable
fidelity models. The discussion is illustrated using well-known analytical functions and, alternative
resolution models, in the surrogate-based modeling of a field scale alkali–surfactant–polymer (ASP)
enhanced oil recovery (EOR) process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Surrogate modeling is increasingly popular and has been success-
fully used in the analysis andoptimization of computationally expensive
models in, for example, the aerospace (Giunta et al., 1997; Balabanov
et al., 1998; Li and Padula, 2004; Queipo et al., 2005), automotive (Craig
et al., 2002; Kurtaran et al., 2002), and oil industries (Queipo et al.,
2002a, b). Recent reviewpapers on the subject are those of Li and Padula
(2004),WangandShan (2007),Queipoet al. (2005).Whenconstructing
surrogate models, time/cost constraints make the designer frequently
face the dilemma of whether to use a small sample of data obtained
from, for example, high fidelity/computationally expensive computer
simulations, or, a large one but with low fidelity values. More generally,
variable fidelity samples can be the result of: i) different physical/
mathematical representations (e.g., inviscid/Euler versus viscous/
Navier–Stokes calculations), ii) alternative resolution models (e.g.,
fine/coarse grids), or, iii) experiments. Ideally, surrogate models should
allow: a) the integration of variable fidelity samples, and, b) provide
estimation and appraisal (error) information consistent with the
amount and fidelity level of the available data.

There have been significant progress in this area through deter-
ministic modeling and optimization approaches such as correction
surfaces (Chang et al., 1993; Toropov et al., 1999; Vitali et al., 2002;
Alexandrov and Lewis, 2002) and space mapping (Bakr et al., 2002;
Bandler et al., 2004); however, these alternatives do not provide
appraisal (error) information. From a spatial-stochastic perspective,
geostatistical methods offer distinctive advantages for addressing
issues a) and b), most notably: they are sound (founded on solid
statistical principles), flexible (e.g., can be extended to higher
dimensions), and efficient (e.g., can be implemented through matrix
operations). The required covariance models (structure and para-
meters) of the variable fidelity data can be identified either through
the so called DACE (Sacks et al., 1989b) or, variogram approaches.

While there is a variety of geostatistical methods (Isaaks and
Srivastava, 1989; Goovaerts, 1997; Chiles and Delfiner, 1999)
potentially useful for addressing the problem of interest such as
(increasingly complex): kriging with external drift (KED), collocated
cokriging with Markov models (CCM), collocated cokriging (CC),
classic cokriging (CLC), in this work, the more general CC and CLC
methods are selected for investigation. Related works include those
of Kennedy and O'Hagan (2000) which was restricted to a CCM
method, and those reported in Koh-Sung and Tapabrata (2004) and
Chung and Alonso (2002a,b) where cokriging approaches use gradient
(secondary) information in surrogate-based estimations.
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This paper discusses the effectiveness and requirements of geo-
statistical methods such as collocated (two versions) and classic
cokriging for the integration of two level (low and high) fidelity
models. The discussion is illustrated using a well-known analytical
function and, two distinct resolution models, in the surrogate-based
modeling of a field scale alkali–surfactant–polymer (ASP) enhanced
oil recovery (EOR) process. ASP flooding is the most promising EOR
solution for one of the greatest challenges facing the oil industry
worldwide: after conventional water flooding the residual oil (drops
trapped by capillary forces) in reservoirs around the world is likely
to be around 70% of the original oil in place.

2. Problem definition

Given Z={z1,z2,..., zn}, and, V={ν1,ν2,..., νm}, representing high
and low fidelity model input/output pairs, respectively, with m≫n,
build a surrogate of the high fidelity model that provides estimation
and appraisal (error) information consistent with the amount and
fidelity level of the available data. It is assumed that: i) the high and
low fidelity models are correlated, and, ii) each model output is a
scalar. Fig. 1 shows a particular case of the problem of interest where
high (circle) and low (diamond) fidelity model samples are available,
and an estimation of the high fidelity model output and corre-
sponding appraisal (error) information is sought at a specific location
(marked with an “X”).

3. Geostatistical methods

Kriging and related methods represent, so called, BLUE-best (mini-
mum error variance) linear unbiased estimators (Isaaks and Srivastava,
1989; Goovaerts, 1997; Chiles and Delfiner, 1999). From the variety of
geostatistical methods potentially useful for addressing the problem of
interest such as (increasingly complex): krigingwith external drift (KED),
collocated cokriging with Markov models (CCM), collocated cokriging
(CC), classic cokriging (CLC), in this work, the more general CC and CLC
methods are selected for investigation.

3.1. Kriging and cokriging

Table 1 summarizes the optimization problem associated with
ordinary kriging, and classic and collocated cokriging, and the corre-
sponding closed-form solutions. In general, the cokriging methods
consider only a small sample associated with a high fidelity model,
and, an abundant sample associated with a low fidelity one.

Fig. 1. Distribution of low (diamonds) and high (circles) fidelity model sample for a 2D
illustration of the problem of interest.

Table 1
Optimization problem associated with kriging, and cokriging methods, and corresponding
closed-form solutions.

Method Optimization formulation

Ordinary
kriging

Find α in:

ẑ0 = αT Z

such that:

Var z0−ẑ0
� �

= σ2
Z + αTCov Zð Þα−2αTCov Z; z0ð Þ

is minimized subject to the restriction:

∑α = 1

to ensure unbiasedness.
Closed-form solution is:

ẑ0 = wT IC I−hLLT IC
� �

Z + hLT ICZ

with
L=vector of ones with the same length of Z

IC = CovðZÞ−1

h = ðLT ICLÞ−1
:

Classic
cokriging

Find α and β in:

ẑ0 = αT Z + βTV

such that:

Var z0−ẑ0
� �

= σ2
Z + αTCov Zð Þα + βTCov Vð Þβ + 2αTCov Z;Vð Þβ

−2αTCov Z; z0ð Þ−2βTCov V ; z0ð Þ

is minimized subject to the restrictions: ∑α=1 and ∑β=0 to

ensure unbiasedness.
Closed-form solution is:

ẑ0 =

0
0
1
0

2
664

3
775
T

COVAMP−1

Z
V
0
0

2
664

3
775 +

Cov Z; z0ð Þ
Cov V ; z0ð Þ

0
0

2
664

3
775
T

COVAMP−1

Z
V
0
0

2
664

3
775

with

COVAMP =

Cov Zð Þ Cov Z;Vð Þ Ln 0

Cov V ; Zð Þ Cov Vð ÞÞ 0 Lm

LTn 0 0 0

0 LTm 0 0

2
666664

3
777775

Ln and Lm are vectors of ones with the same length of Z and V
respectively.

Collocated
cokriging

Find α and β in:

ẑ0 = αT Z + βv0

such that:

Var z0−ẑ0
� �

= σ2
Z + β2σ2

V + αTCov Zð Þα + 2αTCov Z; v0ð Þβ
−2αTCov Z; z0ð Þ−2βCov v0; z0ð Þ

is minimized subject to the restrictions: (∑α)+β=1 to ensure

unbiasedness.

Closed-form solution is:

ẑ0 =
0
0
1

2
4

3
5
T

COVAMP−1
Z
v0
0

2
4

3
5 +

Cov Z; z0ð Þ
Cov v0; z0ð Þ

0

2
4

3
5
T

COVAMP−1
Z
v0
0

2
4

3
5

with

COVAMP =

Cov Zð Þ Cov Z; v0ð Þ Ln

Cov v0; Zð Þ σ2
V 1

LTn 1 0

2
664

3
775

Ln=vectors of ones with the same length of Z.
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Note that: i) the geostatistical method estimates are linear combina-
tions of the available data, and themain goal of the optimization problem
is to find the weights to ensure the best unbiased estimation, and ii) the
optimization problems and closed-form solutions assume that a
covariance function (Cov) has been identified (this issue is addressed
later in this section).

Kriging is a spatial prediction method from geostatistics developed
byMatheron (1963) and named after the pioneeringwork of D.G. Krige
(a SouthAfricanminingengineer); Sacks et al. (1989a,b), and Jones et al.
(1998) made it well-known in the context of the modeling and
optimization of deterministic functions, respectively. In this context, the
prediction is modeled as the sum of two effects, a mean (constant or a
linear trend), and fluctuations around the mean, and it represents a so
called BLUE-best (minimizes prediction error variance) linear unbiased
(expected value of the error equal to zero) estimator. Depending on the
mean assumption, there are several kriging formulations, namely:
simple, ordinary, universal and kriging with external drift; the assump-
tions: a known constant, a constant (unknown), a linear polynomial on
the input variables, and a linear polynomial on an external (secondary)
variable, respectively. Thefluctuationsaround themeanare represented
by a zero mean, second order, stationary process.

Note that the geostatistical methods are: i) founded on solid
statistical principles (sound), ii) can be extended to higher dimen-
sions, provide both estimation and error information, and allow for
non-collocated low and high fidelity data (flexible), and iii) represent
linear estimators which make them easy to implement and update
through matrix operations (efficient). In addition, the geostatistical
methods exhibit the following features: interpolates the high fidelity
data, estimated values not constrained by maximum and minimum
data values, and the so called declustering, screening, and smoothing
effects. The declustering effect refers to the fact that a cluster of closely
located samples will have collectively the weight of a single sample
located near the centroid of the cluster. On the other hand, the
screening effect reduces the influence of a sample (original) by the
addition of one or more samples at intermediate locations between
the original sample and the prediction location. Furthermore, the
considered geostatistical methods behave as low-pass filters away
from the available data and their effect grows with the prediction
error variance.

Fig. 2 illustrates the ordinary kriging weights of sample values for
estimating the high fidelity model output value at a prediction
location (marked with an “X”). Note that even though samples
denoted as a, b and c, are equally distant from the prediction location,
the krigingweights for the closely located samples b and c are reduced
because of the so called declustering effect; the figure also illustrates

the screening effect in samples d and e, having the latter a negative
weight. Notice how the sum of all the weights is one hence satisfying
the ordinary kriging restriction to ensure unbiasedness.

Additionally, these methods give appraisal (error) information
with the estimation, as it is shown in Fig. 3. Fig. 3(a) shows the
estimation and prediction error standard deviation obtained at a
prediction location using the KRI method. Fig. 3(b), on the other hand,
depicts the effect of the addition of low fidelity samples when using
the CLC method; in this scenario, the prediction error standard
deviation is considerably reduced at the prediction location.

The CC and CLC methods differ in whether they place restrictions
on the relative position of the variable fidelity data, and on the
covariance functions required. In the CC method values of the low
fidelity model output have to be available at the prediction sites
(exhaustive). The CLCmethod does not have that requirement. On the
other hand, the CLC method has to fully specify a covariance function
for the high and low fidelity model outputs, and for the cross-
covariance between the high and low fidelity models. In contrast, the
CC method does not require a covariance function for the low fidelity
model. When using the CCmethod two different strategies are used to
estimate the values of the low fidelity model at prediction locations
(if necessary), namely; ordinary kriging (CC-Kri) and the k-nn (with
k=1) classifier algorithm (CC-1nn).

Fig. 3. Estimation and prediction error standard deviation obtained at a prediction
location using (a) KRI and (b) CLC methods.

Fig. 2. Ordinary kriging weights (in parenthesis) of sample values for estimating the
high fidelity model output at a prediction site (“X”). The circle mark represents sample
locations, and the number aside the mark denotes high fidelity model output values.
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3.2. Covariance function identification

The covariance function is identified assuming the spatial-
stochastic process associated with the kriging estimates is stationary,
hence, Cov(Zj, Zk) is the same for any two points xj, xk, with xj−xk=h,
a constant vector. More formally, in this context, the covariance
between two random variables Zj, and Zk is defined by the following
expression (Rp→R):

Cov Zj; Zk
� �

= Cov hð Þ where h = xj−xk

When Cov(h) only depends on the modulus |h| and not on the
direction of vector h, the spatial-stochastic process is considered
isotropic and Cov(h) is a scalar function (R→R). In order to identify
the covariance function (structure and parameters) from only a
sample of model input/output pairs some additional assumptions are
required; in particular, an assumption regarding the principal
directions of continuity. This fact lead to the two most well-known
methods for covariance function estimation: the so called DACE
(Sacks et al., 1989b) and variogram modeling (from geostatistics)
approaches (see, for example, Isaaks and Srivastava, 1989; Goovaerts,
1997; Chiles and Delfiner, 1999).

The DACE approach assumes that the principal directions of
continuity coincide with the Cartesian axes, then, for every variable
component xj from x there is a parameter θj that adjust the continuity
(smoothness) along the j Cartesian direction, and the correlation
function is considered the product of a correlation function for each of
the variable component in vector x, consequently, the covariance
function can be specified as:

Cov hð Þ = Cov 0ð Þ ∏
p

j=1
R θj;hj; y
� �

where Cov(0) is the process variance, the R function makes reference
to the correlation structure (specified by the user) that may depend
on some parameters denoted here as y. The parameters θ and those in
y can be specified using, for example, maximum likelihood estimates.

In contrast to the DACE approach, the variogram modeling
approach looks to explore the principal directions of continuity before
identifying covariance parameters. For this purpose, for vector h, a so
called variogram is defined as:

γ hð Þ = 1
2
E Zj−Zk
� �2

where h = xj−xk

where E denotes expected value. The basic parameters that describe a
variogram are the sill and range. The sill is the (special) asymptotic
variogram value associated to large values of h (lag) and the range is
the lag distance (h) for the sill (spherical model) or 95% of the sill
value (Gaussian and exponential models). Fig. 4 is an example of an
experimental variogram (circles) with three different theoretical
model structures; the sill and range are also shown.

Considering the stationarity assumption, the covariance and vario-
gram are related by the following expression Cov(0)=Cov(h)+γ(h);
so if you identify the variogram, the covariance function is also
established. In order to identify Cov(h) using this approach another
postulate needs to be made regarding the covariance anisotropy: the
iso-contours of Cov(h), that is, Cov(h)=c, are similar (with an elliptical
shape) regardless of the constant c, and, as in principal component
analysis, the orthogonal principal directions and axis sizes need to
be established (e.g., using so called directional variograms). Having
accomplished this task, a linear transformation takes the ellipsoids into
spheres and the covariance problem is now isotropic and all the samples
can be used to estimate the Cov(h). The covariance model structures
used are parsimonious and rely atmost on only two or three parameters.
Once the structure is established, the parameters (a lower number than

the p parameters θj in the DACE approach) can be more robustly
identified using weighted mean squares, maximum likelihood, etc.

4. Solution methodology

The proposed approach to build a surrogate of a high fidelitymodel
from high and low fidelity data, as specified in Section 2, includes the
following steps:

(1) Identify the covariance models (structure and associated
parameters) required for the selected geostatistical method.
In this work, for such purpose, the variogram approach is
favored. The CC method requires the identification of a
covariance model associated with the high fidelity data, and,
a cross-covariance model for the high and low fidelity data. On
the other hand, the CLC method requires not only the above
referenced covariance models but also a covariance model for
the low fidelity data. Once the theoretical variogram model is
identified (Table 2), the covariance model is obtained through
the following expression: Cov(h)=σ2−γ(h), where σ2 repre-
sents the sill, γ(h) the theoretical variogram model, and, h the
distance between the points whose covariance is sought.

(2) If necessary, extend the low fidelity data to the prediction sites
(CC method). The cited extension can be done using kriging, or
using the 1-nn classifier. In the case of kriging, a covariance
function for the low fidelity model needs to be identified. Both
approaches are used in the context of this work.

(3) Build a surrogate of the high fidelity model using the
covariance structures/parameters identified in step (1) as
specified by the CC and CLC methods. For a given set of
prediction sites, the cokriging models require the solution of
constrained optimization problems established in Table 1.

Fig. 4. Example of an experimental variogram and three theoretical variograms. The sill
(γ=6.4) and range (h=0.4) are represented with dotted lines.

Table 2
Description of common theoretical variogram models.

Model γ(H)/∑2 h

Nugget 0 h=0
1 h>0

Spherical 3h
2a

−1
2

h
a

� �3
0≤h≤a

1 h>a

Exponential 1− exp −h
a

� �
h≥0

Gaussian 1− exp − h
a

� �2
� �

h≥0
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Given a sample of high fidelity values, the relative performance of
the CC and CLC methods will be established by measuring the number
of additional low fidelity values required by each of the methods to
achieve different error reduction percentages with respect to the error
obtained using only the initial high fidelity sample. The number of
additional high fidelity values that would be required to achieve
similar error reductions will also be available.

The methodology was implemented using a well-known geosta-
tistical software package named Gstat (www.gstat.org). Available
since 1997, Gstat is an open source (GPL) computer code for
multivariable geostatistical modeling, prediction and simulation. As
of 2003, the Gstat functionally is also available as an S extension,
either as an R package or S-Plus library. Details of Gstat can be found in
Pebesma (2004).

5. Case studies

Analytical and industrial case studies are used to illustrate the
proposed approach and to assess the relative performance of the
cokriging methods under consideration. The analytical case study
corresponds to a well-known optimization test function (Jin and
Chen, 2000) denoted as F1, and the industrial case study refers to a
modeling problem in the area of enhanced oil recovery.

5.1. Analytical test function F1

The function of interest is represented in Eq. (1). The domains of
interest for the input variables x1 and x2 are given by the intervals
(0.9), and, (0.6) respectively; the function range is 88.8.

F1 = 30 + x1 sin x1ð Þ½ � 4 + exp −x2ð Þ2
h i

ð1Þ

The equation abovewill represent the so called high fidelitymodel.
The low fidelity model corresponds to a filtered version of the
function denoted by Eq. (1) obtained using Wavelets Daubechies #4
(Daubechies, 1988). This filtering process is expected to preserve the
basic features of the original function so that the high and low fidelity
models are correlated. Fig. 5 illustrates both the high and low fidelity
models.

The test set includes 4096 input/output pairs from a grid of 64×64.

5.2. Alkali–surfactant–polymer (ASP) modeling problem

The ASP enhanced oil recovery modeling problem addressed here
is to build a surrogate model of a computationally expensive
numerical simulator, that will take as input: surfactant (S) and
polymer (P) concentrations, ASP slug size (expressed in the form of
the injection time), and as output the cumulative oil production (NP)
in bbls. The ranges of the input variables surfactant and polymer
concentrations are given by 0≤S≤0.005 vol.fract. and 0≤P≤0.10 wt.
%. The injection time is 194 days and the cumulative oil production is
calculated at 800 days. As illustrated in Fig. 6, the ASP flooding pilot
has an inverted five-spot pattern and a total of 5 vertical wells,
4 producers and 1 injector. The high and low fidelity models (Fig. 7)
are associated with two different numerical grid resolutions, namely,
18×18×3 (range: 41,360 bbls), and, 9×9×3 (range: 27,850 bbls)
in the x, y, and z directions, respectively. The cited ranges were
calculated on a 15×15 grid for the input variables (S and P). The
numerical grid associated with the low fidelity model was obtained
using an appropriate upscaling process.

The reservoir is at a depth of 4150 ft., has an average initial
pressure of 1740 psi, and the porosity is assumed to be constant
throughout the reservoir and equal to 0.3. The crude oil viscosity is
40 cp, the initial brine salinity is 0.0583 meq/ml and the initial brine
divalent cation concentration is 0.0025 meq/ml. A summary of the

reservoir and fluid properties is presented in Table 3. The injection
scheme and other reference configuration details can be found in the
sample data files of the UTCHEM program (UTCHEM, 2000).

The UTCHEM program is a three-dimensional, multiphase, multi-
component reservoir simulator of chemical flooding processes

Fig. 5. High (a) and low (b) fidelity models — F1 case study.

Fig. 6. Inverted five-spot in the ASP flooding pilot case study.
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developed at the University of Texas at Austin (Pope and Nelson,
1978; Engelsen et al., 1987; Lake et al., 1990). The basic governing
differential equations consist of: a mass conservation equation for
each component, an overall mass conservation equation that
determines the pressure (the pressure equation), an energy balance,
and Darcy's Law generalized for multiphase flow. The resulting flow
equations are solved using a block-centered finite-difference scheme.
The solution method is implicit in pressure and explicit in concen-
tration, similar to the well-known IMPES method used in blackoil
reservoir simulators. A Jacobi conjugate gradient method is used to

solve the system of finite-difference equations resulted from the
discretization of the pressure equation.

Three flowing phases and eleven components are considered in
the numerical simulations. The phases are water, oil and microemul-
sion, while the components are water, oil, surfactant, polymer,
chloride anions, divalent cations (Ca2+, Mg2+), carbonate, sodium,
hydrogen ion, and oil acid. The ASP interactions are modeled using the
reactions: in situ generated surfactant, precipitation and dissolution
of minerals, cation exchange with clay and micelle, and chemical
adsorption. Note the detailed chemical reaction modeling, and the het-
erogeneous and multiphase petroleum reservoir under consideration.

The test set includes 225 input/output pairs from a grid of 15×15.

6. Results and discussion

Figs. 8 and 9 show the theoretical variograms associated with the
high, low, and cross-covariance functions adjusted to the experimen-
tal variograms in the F1 and ASP modeling case studies, respectively.
The experimental variograms were constructed using an extended
sample to make sure the correlation models were properly identified;
specifically, for the F1 (ASP modeling) case study 90 (60) and 80 (50)
high and low fidelity sample sizes were used. In all instances a single
model type and range were used to assure the positive definiteness of
the covariance matrices and hence a proper solution of the cokriging
optimization problems. The model type that provided the best fit was
the spherical model; the sill and range values for all the theoretical
variograms are shown in Table 4. As expected, the sills for the low and
high fidelity samples are similar, and their arithmetic mean is higher
that the sill for the cross-covariance model.

Figs. 10 and 11 show for the F1, and ASP modeling case studies,
respectively, the relative performance of the CC and CLC methods by
establishing the number of additional low fidelity values (for a given
initial sample of high fidelity values) required by each of the methods
to achieve a particular RMSE. The number of additional high fidelity
values required to achieve similar RMSE is also shown. Additionally,
Table 5 shows the number of additional high or low fidelity values
necessary to reach a particular percentage reduction of the RMSE on a
test data. It also shows the number of additional low fidelity values
equivalent to a single high fidelity value in terms of percentage
reduction of RMSE.

With reference to Figs. 10 and 11, and Table 5, all the cokriging
models (CLC, CC) allow improving performance by integrating low
fidelity samples to an existing high fidelity one. For example, a RMSE
of six (6) in the F1 case study can be achieved by the integration of
approximately thirty (30) low fidelity samples using CLC or CC-Kri, or
approximately fifteen (15) additional samples if only high fidelity
samples are used. Similarly, in the case of the ASPmodeling case study
a RMSE of five hundred and fifty (550)bbls can be achieved by the
integration of approximately twenty two (22) low fidelity samples
using CLC or CC-Kri, or approximately seventeen (17) additional
samples if only high fidelity samples are used.

In terms of percentage reduction of RMSE (Table 5) observe that, in
the F1 case study, when using CLC an eight percent (8%) reduction of
the RMSE can be achieved by either eight (8) additional high fidelity
values, or, eighteen (18) low fidelity ones. Hence, in this context, a
high fidelity value is worth 2.25 times a low fidelity one, and, in
general, the worthiness of high fidelity values decreases with
increasing values of percentage reduction of the RMSE. The range of
the worthiness of high fidelity values versus low fidelity ones was
between 1.25 and 3.70. Estimates of the worthiness of high fidelity
values can be useful when combining a small sample of data obtained
from, for example, high fidelity/computationally expensive computer
simulations, and, a larger one but with low fidelity values.

Additionally, note that for the case of low fidelity samples, after a
certain sample size (problem dependent), no error reduction is
observed (asymptotic behavior), which indicates that no significant

Fig. 7. High (a) and low (b) fidelity models — ASP case study.

Table 3
Reservoir and fluid properties. ASP modeling case study.

Property Value Unit

Reservoir depth 4150 (1265) ft (m)
Oil viscosity 40 cp
Porosity 0.3 fraction
Average initial pressure 1740 psi
Well ratio 0.49 (15) ft (m)
Skin factor 0 adim
Water salinity CNa 0.0583 meq/ml

CCa 0.0025 meq/ml
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modeling information is added. In general, though, this is not the case
when incorporating high fidelity samples. It is also observed that the
CC-Kri and CLC methods exhibited similar performance, outperform-
ing in all instances, the CC-1nnmethod. For example, in the context of
the ASP case study, a RMSE of five hundred and fifty (550)bbls can be
achieved by the integration of approximately twenty two (22) low
fidelity samples using CLC or CC-Kri, or thirty five (35) using CLC-1nn.
The differences in the performance of CC-Kri vs. CC-1nn (more than
50% additional low fidelity samples required) can be explained by the
latter method giving potentially inaccurate estimates when extending
the low fidelity values to prediction sites.

The fact that CLC and CC-Kri exhibit similar performance is
noteworthy since the former method requires the additional effort of
estimating the covariance model associated with the low fidelity
values; however, the performance of the latter can deteriorate if the
low fidelity sample is too small to reasonably estimate the low fidelity
values at prediction sites. Another consideration when selecting
between the CLC and CC methods, is that if the sample size of the low
fidelity variable is relatively high, the corresponding optimization
problem can be significantly harder to solve in the case of the CLC
method, although this latter issue can be overcome by using a
restricted set of the low fidelity sample close to the prediction site.

For all case studies and cokriging approaches uncertainty estimates
were consistent with amount and fidelity of the available data. For
example, Figs. 12 and 13 display standard deviation estimates, and
uncertainty reductions throughout the input space as the result of
the addition of low fidelity simples for the F1 and ASP case studies,

respectively. Inbothcases, CLC is usedand twoscenarios are considered:
only high fidelity simulations (10) are used (a), and both high (10) and
low (10) fidelity simulations. The final picture (c) within the figures
shows the uncertainty reduction as the result of the addition of low
fidelity samples.

With references to Figs. 12(a) and 13(a) note that the standard
deviation estimates goes from zero (white color) at the available data
to the highest values of the scale in regions away from the available
data. Also observe that the addition of low fidelity values (green
circles) as shown in Figs. 12(b) and 13(b) translates into lower
uncertainty values (whitening of previously blue regions). Figs. 12(c)
and 13(c) depict that, as expected, the largest uncertainty reductions
associated with the addition of low fidelity samples corresponds to
regions where high fidelity values were not available.

7. Conclusions

Ideally, surrogate models should allow: a) the integration of
variable fidelity samples, and, b) provide estimation and appraisal
(error) information consistent with the amount and fidelity level of
the available data. The branch of spatial statistics known as
geostatistics offers considerable advantages when satisfying the
above referenced requirements (a and b). This paper discussed the
effectiveness and requirements of geostatistical methods such as
classic cokriging and two variants of collocated cokriging for the
integration of two level fidelity models; these methods can be shown
to give unbiased and optimal estimates among linear models. Two

Fig. 8. Theoretical variogram adjusted to the experimental variogram — F1 case study.
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case studies are considered: a well-known analytical function and,
distinct resolution models, in the surrogate-based modeling of a field
scale alkali–surfactant–polymer (ASP) enhanced oil recovery (EOR)
process.

All cokriging methods considered allowed improving performance
by integrating low fidelity samples to an existing high fidelity one.
Classic cokriging offered the best overall performance but it has the
drawback that it requires the specification of three covariance
functions and the optimization formulation associated with predict-
ing values may be hard to solve for large low fidelity sample sizes. As
an alternative, the collocated cokriging (CC) approach does not need
to specify the correlation model associated with the low fidelity
values, and the optimization problem associated with the estimations
are easier to solve. However, the CC approach require estimates of the

low fidelity variable at prediction sites; properly extending the low
fidelity value to prediction sites is sensitive to the method used and
sample size. For the latter task, the kriging method showed to be

Fig. 9. Theoretical variogram adjusted to the experimental variogram — ASP case study.

Table 4
Sill and range values for the theoretical variograms identified in the F1 and ASP
modeling case studies.

Models Sill Range

F1 High 271.4 4
Low 268.3 4
Crossed 259.8 4

ASP High 756,977.1 0.5
Low 612,088.3 0.5
Crossed 521,801.9 0.5

Fig. 10. Number of additional low fidelity samples required for a given RMSE on a test
data set for the different cokriging models. The number of additional high fidelity
samples to achieve a given RMSE is also shown (high KRI) — F1 case study.
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much more effective than 1-nn for all samples sizes considered in this
work. The classic and collocated cokriging (with kriging for extending
the low fidelity values to prediction sites) showed similar perfor-
mance with the latter offering predictions at a significantly lower
computational cost.

The cokriging approaches uncertainty estimates were consistent
with amount and fidelity of the available data with the greatest
uncertainty reductions associated with the addition of low fidelity
samples to regions where high fidelity values were not available.

The effectiveness of the approach in the context of modeling
problems in higher dimensions, the accuracy of the error variance
predictions, and practical specifications of the covariance models are
the subject of current research efforts.

Nomenclature
KRI Ordinary kriging
CLC Classic cokriging
CC Collocated cokriging
Cov Covariance function
Var Variance function
R Correlation function
γ Variogram function

Table 5
The number of additional high or low fidelity values necessary to reach a particular percentage reduction of the RMSE on a test set. It also shows the number of additional low fidelity
values equivalent to a single high fidelity value in terms of percentage reduction of RMSE. The initial high fidelity sample size was equal to ten (10).

Model: CLC CC-KRI CC-1NN

Case study % of error reduction High fidelity samples Low fidelity samples Worthiness Low fidelity samples Worthiness Low fidelity samples Worthiness

F1 2 7 15 2.14 20 2.86 21 3.00
4 7 16 2.29 20 2.86 22 3.14
6 8 17 2.13 21 2.63 23 2.88
8 8 18 2.25 21 2.63 24 3.00

10 8 19 2.38 22 2.75 25 3.13
12 9 20 2.22 23 2.56 26 2.89
14 9 21 2.33 24 2.67 27 3.00
16 10 22 2.20 25 2.50 28 2.80
18 10 24 2.40 25 2.50 30 3.00
20 11 25 2.27 26 2.36 31 2.82
22 11 26 2.36 27 2.45 32 2.91
24 12 27 2.25 28 2.33 34 2.83
26 13 28 2.15 29 2.23 36 2.77
28 15 30 2.00 30 2.00 38 2.53
30 16 31 1.94 31 1.94 40 2.50
32 17 32 1.88 31 1.82 44 2.59
34 18 33 1.83 32 1.78 60 3.33
36 20 35 1.75 34 1.70 74 3.70
38 22 36 1.64 35 1.59 – –

40 24 38 1.58 37 1.54 – –

42 25 39 1.56 38 1.52 – –

44 27 41 1.52 40 1.48 – –

46 29 43 1.48 41 1.41 – –

48 31 45 1.45 44 1.42 – –

50 33 49 1.48 49 1.48 – –

52 37 52 1.41 76 2.05 – –

54 41 60 1.46 – – – –

56 45 – – – – – –

ASP 1 7 14 2.00 15 2.14 15 2.14
2 9 17 1.89 17 1.89 19 2.11
3 10 18 1.80 18 1.80 21 2.10
4 11 19 1.73 19 1.73 24 2.18
5 12 20 1.67 20 1.67 26 2.17
6 14 21 1.50 21 1.50 28 2.00
7 16 23 1.44 22 1.38 31 1.94
8 18 24 1.33 24 1.33 34 1.89
9 20 26 1.30 25 1.25 38 1.90

10 22 28 1.27 27 1.23 43 1.95
11 24 30 1.25 29 1.21 50 2.08
12 26 33 1.27 31 1.19 – –

13 28 38 1.36 33 1.18 – –

14 29 47 1.62 36 1.24 – –

15 31 – – 45 1.45 – –

16 33 – – – – – –

Fig. 11. Number of additional low fidelity samples required for a given RMSE on a test
data set for the different cokriging models. The number of additional high fidelity
samples to achieve a given RMSE is also shown (high KRI) — ASP case study.
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Fig. 13. Standarddeviation estimates (a, and b) anduncertainty reductions (c) throughout
the input space as the result of the addition of low fidelity samples. The red stars represent
the location of high fidelity samples, while the green circles depict the location of low
fidelity samples (ASP case study).

Fig. 12. Standarddeviation estimates (a, and b) anduncertainty reductions (c) throughout
the input space as the result of the addition of low fidelity samples. The red stars represent
the location of high fidelity samples, while the green circles depict the location of low
fidelity samples (F1 case study).
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F1 Analytical case study
ASP Alkali–surfactant–polymer
EOR Enhanced oil recovery
NP Cumulative oil production
RMSE Root mean square error
α, β Weights of the high and low fidelity samples
Z, V High and low fidelity model samples
σz
2, σV

2 High and low fidelity model sample variances
z ̂0 High fidelity model estimate
v0 Low fidelity model output at prediction sites
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