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Abstract 

In the context of surrogate-based optimization, most designers have still very little guidance on when to stop 

considering optimum estimates are seldom available. Hence, cycles are typically stopped when resources run 

out (e.g., number of objective function evaluations/time) or convergence is perceived. This work presents an 

approach for estimating the minimum (target) of the objective function at a given cycle using concepts from 

extreme order statistics. It is assumed that the sample inputs are uniformly distributed so the outputs can be 

considered a random variable, whose density function is bounded, with the minimum as its lower bound. An 

estimate of the minimum (a density function bound) is then obtained through the moment matching method. 

The proposed approach is independent of the surrogate and optimization strategies and can be tailored to fit 

a variety of risk attitudes and design environments. The effectiveness of the proposed approach was evaluated 

using well-known analytical optimization test functions (F2 and Hartmann 6D). The results revealed that: a) 

the density function (from a catalog) with the best match to the function outputs distribution, was the same 

for both large and reduced samples, b) the true optimum value was always within a 95% confidence interval 

of the estimated minimum distribution, and c) the estimated minimum represents a significant improvement 

over the present best solution and a excellent approximation of the true optimum value. 

Nomenclature 

X = random variable 

Xi = i-th sample of the random variable X 

F(x) = cumulative distribution function 

f(x) = density function 

N = sample size 

E(x) = expected value 

a = estimated minimum  

b = estimated maximum 

I. Introduction 

ssessing the merit of another cycle in surrogate-based optimization for engineering design versus accepting the 

present best solution
1
 is an issue of considerable interest in the optimization of complex engineering systems 

(e.g., aerospace
2-5

, automotive
6,7

, oil industries
8,9

). Recent review papers on the subject of surrogate-based 

optimization are those of Li and Padula
4
, G. Gary Wang

10
, and, Queipo et al.

5
.  Each cycle consists of the analysis of 

a number of designs, the fitting of a surrogate, optimization based on the surrogate, and exact analysis at the design 

obtained by the optimization. The cycles are typically stopped when resources run out (e.g., number of objective 

function evaluations/time) or convergence is perceived, such as when the latest improvement represents a particular 

fraction of the span of the objective function evaluations.  However, most designers have still very little guidance on 

when to stop since the potential of another cycle -optimum estimates are seldom available- is not known. 

Jones et al.
11

 using the so called expected improvement (EI) as infill measure stopped the search when the 

maximum EI was less than 1% of the present best solution. Sasena et al.
12

 compared alternative infill sampling plans 

using a generalized EI measure while stopping the cycles after a fixed number of objective function evaluations. 

Sobester et al.
13

 used a weighted EI criterion and also limited the cycles to a fixed number of objective function 

evaluations. Huang et al.
 14

 presented a so called augmented EI to address stochastic black box systems and used as 
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stopping criterion a tolerance for the ratio between the maximal EI and the active span of the responses. 

Alternatively, Apley et al.
15

 in the context of robust design gave guidelines for additional cycles depending on 

whether or not the analytical prediction intervals for potential designs overlapped. Forrester and Jones
16

 proposed an 

EI measure with no user defined parameters and stopped the cycles after a particular target is reached. These works 

consider the deployment of a single point in each additional cycle. In contrast, clustered approaches for the 

deployment of multiple points in additional cycles were conducted for probability of improvement (PI) as infill 

measure
17

 and generalized EI
18

; the former did not specify a stopping criterion while the latter used a fixed number 

of objective function evaluations. Using a fixed number of cycles Ginsbourger et al.
19

 gave results for both EI and PI 

as infill sampling criteria also allowing for multiple points in each additional cycle; two heuristics were used for the 

EI calculations. Note that, in general, the stopping criteria were not based on optimum estimates. 

This work presents an approach for estimating the minimum (target) of the objective function at a given cycle 

using concepts from extreme order statistics
20

. It is assumed that the sample inputs are uniformly distributed so the 

outputs can be considered a random variable, whose density function is bounded, with the minimum as one of its 

parameters. An estimate of the minimum (a density function bound) is then obtained through the moment matching 

method. The proposed approach is independent of the surrogate and optimization strategies and can be tailored to fit 

a variety of risk attitudes and design environments. 

The remainder of the paper is structured as follows: problem statement (Section II), solution approach (Section 

III), case studies (Section IV), results and discussion (Section V), and summary and conclusions (Section VI). 

II. Problem definition 

The problem of interest can be stated as: given a sample of model input/output pairs, estimate the minimum of 

the model output (objective function). It is assumed that the model output is a scalar, and the sample inputs are 

uniformly distributed so the outputs can be considered a random variable. 

 

III. Proposed approach 

Given a sample of points, the expected value for the minimum of a function is obtained through the following 

three steps: A. Generate a catalog with a variety of bounded (a,b) analytical density functions, B. For each of the 

density functions in the catalog, estimate the bounds (a,b) using the moment matching method, and C. Identify the 

bounded density function with the best match to the sample outputs distribution; the lower bound (a) for the selected 

density function is the minimum estimate sought. Details of each of these steps are given below. 

 

A. Generate a catalog with a variety of bounded (a,b) analytical density functions. This can be accomplished 

using a generalized Beta (p,q,a,b) density function for modeling the random variable of interest (objective function 

values); the random variable X is a generalized Beta (p,q,a,b) density function -defined in the interval (a,b)- if 

 
ab
aXZ



  is a Beta (p,q) in the interval (0,1). Since  
ab
aXZ



  is a linear transformation, the Beta (p,q,a,b) and Beta 

(p,q) density functions share the same shape, hence the latter can be used to select p,q parameters (without knowing 

the bounds a,b) for generating a catalog of density functions with the desired modeling flexibility. The rationality of 

using Beta (p,q) distributions (Table 1): they give a compact description of a whole range of density functions 

(Figure 1).  
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B. For each of the density functions in the catalog, estimate the bounds (a,b) using the moment matching 

method. It includes solving a system of equations for the analytical density function bounds (a,b) that results from 

equating the expected value for the minimum, and maximum with the sample outputs minimum and maximum, 

respectively.  

 
B.1. Expected value for the minimum and maximum 
Given a random sample X1,….,XN  of a random variable X  with density and cumulative distributions  f(x) and 

F(x), respectively, the distribution of the maximum, i.e. max(X) = max(X1,….,XN ) and minimum values, i.e. min(X)  

= min(X1,….,XN ) can be obtained as follows: 





N

k

N

k xFxXProbxProbxF
1

max )()()(max)(  

 

 
Figure 1. Catalog of bounded analytical density functions (i) and corresponding cumulative distributions 

(ii) using Beta(p,q) distributions with selected values for the parameters p and q. Note the variety of 

density functions  
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The corresponding density functions are: 
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Hence, the expected value for the maximum can be calculated as: 
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And the expected value for the minimum can be shown to be: 
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B.2. System of equations for the density function bounds and its analytical solution.  Equating the expected 

value for the minimum/maximum (B.1) and the sample output minimum (xmin) and maximum (xmax) the following 

system of equations is obtained: 

 

  
   












Nnj

Nnj

cabaxxxx

dabbxxxx

)(,...,..min

)(,...,..max

1min

1max
 

 

Solving the system of equations above, the estimates for the bounds (a,b) are: 
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Note that the bounds (a,b) are essentially estimates for the model output (objective function) minimum and 

maximum, respectively. 

 

 



 
American Institute of Aeronautics and Astronautics 

5 

C. Identify the bounded density function with the best match to the sample outputs distribution. The best 

match refers to the bounded analytical density function with the lowest maximum absolute difference (Dmax) 

between its cumulative distribution and the corresponding to the sample outputs. The density function of interest can 

be selected in two alternative ways: i) from a catalog of generalized Beta(p,q,a,b) distributions, with p,q specified in 

step A (Figure 1), and bounds a,b obtained in step B, or ii) using the generalized Beta(p,q,a,b) distribution that 

results of selecting the p,q parameters that provides the best fit for conservative estimates of the bounds a,b (i.e., 

assuming a uniform distribution and the moment matching method), with the bounds a,b updated using the 

procedure described in step B (alternative matching). 

 

IV. Case studies 

The proposed approach for estimating the expected value for the minimum of a function from a sample of 

input/output pairs, is evaluated using two well-known optimization test functions: F2 (Figure 2) and Hartmann 6D. 

Two sample sizes, a reduced and a larger one, include 10·k and 20·k samples, respectively, with k being number of 

input dimensions. To study the impact of the design of experiment on the effectiveness of the proposed approach, a 

hundred (100) latin-hypercubes are considered for each test function and sample size.  
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-10 ≤ x1 ≤ 10 

-20 ≤ x2 ≤ 20 
Range = [ -1, 1 ] 

 

fopt = [ -1, -1, -1 ] 

xopt = [ ( -6, 0 ), ( 6, -16 ), ( 6, 16 ) ] 

 

B. Hartmann 6D 
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Figure 2. F2 test function 
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fopt = -3.32237 

xopt = [ 0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573 ] 

 

C. Performance requirements. These are: i) the Beta(p,q,a,b) analytical density function with the best match to the 

sample output pairs should be the same for both the reduced and larger sample sizes (robustness), ii) the true 

optimum should be within a 95% confidence interval of the estimated minimum distribution (statistically sound), iii) 

the estimated minimum should be a good approximation for the true optimum, and a meaningful improvement over 

the sample outputs minimum (present best solution) even for modest sample sizes (reasonably accurate), and iv) the 

minimum estimates should exhibit statistically significant (median and dispersion) improvements for larger sample 

sizes (consistent). The effectiveness of the minimum estimates is measured as the difference between the estimated 

minimum and the true optimum value as a fraction of the function range (i.e., relative error). 

 

V. Results and discussion 

Figures 3 (F2) and 4 (Hartmann 6D) show the boxplots corresponding to the Dmax empirical distribution for a 

hundred LHS. Note that for both reduced and larger sample sizes the best matching Beta(p,q) density function was 

the same (robustness) and there could be significant mismatches depending on the parameters p, q. In the case of 

Hartmann 6D, the median and dispersion of the Dmax empirical distribution were significantly reduced by optimizing 

the Beta distribution parameters.  

 

 
 

 

 

 
 

Figure 3. Boxplots of the Dmax for selected Beta distributions for reduced (i) and larger (ii) sample sizes. 

An arrow points to the Beta distribution with the best match to the sample outputs distribution.  The 

parameters (p,q) and shape of the Beta distributions in the catalog are depicted below each of the boxplots, 

except for the results obtained using the alternative matching procedure where the median for the 

parameters p,q are shown– F2 case study 
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On the other hand, the true optimum value was always within a 95% confidence interval of the estimated 

minimum distribution even for reduced sample sizes for the F2 and Hartmann 6D case studies as shown in Figures 5 

and 6, respectively; furthermore, the zero relative error (Figures 7 and 8) in all instances was within the lower and 

upper quartiles (statistically sound). In addition, the estimated minima represented a good approximation of the true 

optimum value considering the median of the relative error were  3% (reduced sample) and 2% (larger sample), and 

27% (reduced sample) and 13% (larger sample), in the F2 (Figure 7) and Hartmann 6D (Figure 8) case studies, 

respectively. Furthermore, these errors were a significant improvement over the median of the relative errors (6% 

and 44%) for the corresponding present best solution (reasonably accurate). Note that in all instances the errors 

(median and dispersion) were considerably reduced with larger sample sizes (consistent). 

 

 

 
 

Figure 4. Boxplots of the Dmax for selected Beta distributions for reduced (i) and larger (ii) sample sizes. 

An arrow points to the Beta distribution with the best match to the sample outputs distribution.  The 

parameters (p,q) and shape of the Beta distributions in the catalog are depicted below each of the boxplots, 

except for the results obtained using the alternative matching procedure where the median for the 

parameters p,q are shown – Hartmann 6D case study 

 
Figure 5. Empirical distribution of estimated minimum values with an indication of the true minimum 

value for reduced (i) and larger (ii) sample sizes. Ninety five percent confidence intervals are also shown – 

F2 case study 

Alt. Matching Catalog 



 
American Institute of Aeronautics and Astronautics 

8 

 
 

 
 

 
Figure 6. Empirical distribution of estimated minimum values with an indication of the true minimum 

value for reduced (i) and larger (ii) sample sizes. Ninety five percent confidence intervals are also shown – 

Hartmann 6D case study 

 

 
Figure 7. Boxplots of the relative error for: (i) sample minimum value and estimated minimum value 

using a reduced (ii) and larger (iii) sample size– F2 case study 
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VI. Conclusions 

This work presents an approach for estimating the expected value for the minimum (target) of the objective 

function at a given cycle using concepts from extreme order statistics. It is assumed that the sample inputs are 

uniformly distributed so the outputs can be considered a random variable, whose density function is bounded, with 

the minimum being its lower bound. An estimate of the minimum is then obtained through the moment matching 

method. 

It was possible in all case studies to identify the density function (from a catalog) with the best match to the 

function outputs distribution using a reduced sample and the true optimum value was always within a 95% 

confidence interval of the estimated minimum distribution. Furthermore, the estimated minimum represented an 

excellent approximation of the true optimum value even for reduced sample sizes with significant improvements 

over the present best solution. 

The proposed approach is independent of the surrogate and optimization strategies can be tailored to fit a variety 

of risk attitudes and design environments, and holds promise to be useful in setting targets and assessing the value of 

another cycle in surrogate-based optimization. 
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