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Abstract The sample Dykstra–Parsons (DP) coefficient, the most popular hetero-
geneity static measure among petroleum engineers, may exhibit significant sam-
pling errors. Moreover, approximations of its probability distributions (uncertainty
estimates) are only available for specific families of permeability models (e.g., log-
normal). The cited probability distributions allow for the specification of confidence
intervals and other inferences for the theoretical DP, which will be useful for reser-
voir screening purposes, or to establish if a more detailed study is justified. This
paper presents the development of an asymptotic approximation of the distribution
of the sample Dykstra–Parsons coefficient, which is independent of the permeabil-
ity probability distribution. The effectiveness (bias and confidence intervals) of the
proposed approach is demonstrated using analytical and field case studies and by
comparing the results gleaned with those obtained using a well-known parametric
approximation, under different scenarios of reservoir maturity levels (i.e., number
of wells) and different degrees of deviation from the log-normal probability density
function assumption. The results show that, in the vast majority of the case studies,
the proposed approach outperformed the parametric approximation; in particular, our
approach resulted in a significant reduction of the bias and the confidence intervals
always including the theoretical DP coefficient. In addition, an excellent agreement
was observed between the asymptotic cumulative distribution of the DP coefficient
and the corresponding empirical distribution for sample sizes as small as one hundred,
which suggests that high success rates can be obtained when reservoirs are classified
according to the asymptotic DP coefficient.
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1 Introduction

In the context of enhanced oil recovery projects, heterogeneity (the spatial variation
of properties) has long been recognized as a key factor in the prediction of reservoir
performance. The latter is measured in terms of the amount of petroleum recovered,
the time to breakthrough, and the peak hydrocarbon production (Jensen et al. 1987;
Jensen and Lake 1988; Lake and Jensen 1991; Jensen and Currie 1990). While the
complexity of the heterogeneity/performance relationship is well documented, for
the purpose of screening or to establish whether a more detailed study is justified, the
sample Dykstra–Parsons (DP) coefficient remains the most popular static measure
of heterogeneity static measure among petroleum engineers. Recent applications in-
clude its use in sensitivity analysis (McCoy and Rubin 2009; Alajmi et al. 2009;
Bossie-Codreanu and Le Gallo 2004; Adewusi 2002), reservoir heterogeneity clas-
sification (Mergany 2007) and upscaling techniques (Maschio and Schiozer 2003).
The DP coefficient estimates may, however, be at a significant error, which may lead
to both unrealistic reservoir performance predictions and unsuccessful development
plans. As a result, assessing the DP coefficient’s bias and confidence intervals is a
project of considerable interest.

The classic form of the DP coefficient represents a robust estimate of the well-
known coefficient of variation σ/μ, a normalized measure of dispersion of a nor-
mal random variable that is used for describing reservoir permeability heterogeneity.
However, uncertainty estimates of the classical DP are only available on the assump-
tions that the reservoir property of interest (typically permeability) exhibits a log-
normal probability density function, or that there is a transformation (Box–Cox) that
can lead to normal behavior (Jensen and Lake 1988). These assumptions frequently
do not hold. This paper presents a novel development of an asymptotic approximation
of the sample DP distribution which is independent of the permeability probability
distribution. The development is based on a result from order statistics: the asymp-
totic normal behavior of the joint probability distribution of sample quantiles (Cramer
1999; David and Nagaraja 2003).

Section 2 discusses the theoretical and sample DP coefficient; Sect. 3 presents a
frequently used parametric approach for approximating the sample DP distribution;
Sect. 4 develops an asymptotic approximation of the sample DP distribution; and
Sect. 5 includes a description of the case studies used for evaluating the relative per-
formance (bias and confidence intervals) of the proposed approach under different
scenarios, of reservoir maturity levels (i.e., number of wells), and degrees of devia-
tion from the log-normal probability density function assumption. Finally, Sects. 6
and 7 discuss the results obtained and the most significant conclusions derived from
them, respectively.
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2 The Dykstra–Parsons Coefficient

The Dykstra–Parsons coefficient (Dykstra and Parsons 1950) is a variability measure
that overcomes the limitations (such as sensitivity to extreme values) of the classical
coefficient of variation for asymmetric probability distributions by substituting the
statistics σ and μ by analog quantities calculated using order statistics (quantiles).

More specifically, the coefficient of variation—that is, (μ− (μ−σ))/μ—can also
be written as [φ−1(p2) − φ−1(p1)]/φ−1(p2), if φ−1 denotes the inverse cumulative
distribution function (cdf) of a normal probability distribution and p1 and p2 repre-
sent φ(μ − σ) ≈ 0.159 and φ(μ) = 0.5, respectively. Substituting φ by F —that is,
the cumulative probability distribution of the property of interest (random variable
X)—the theoretical Dykstra–Parsons (DPT) coefficient can then be expressed as

DPT = F−1(p2) − F−1(p1)

F−1(p2)
= x2 − x1

x2
, (1)

where xp is the quantile of the probability distribution of X associated with probabil-
ity p, such that F(xp) = p. Note that x2 is the median of the population and that, for
positive random variables such as permeability, 0 < DPT < 1.

Since only a sample (size n) X1, . . . ,Xn of the random variable X is available, it
is ordered such that X(1) ≤ X(2) · · · ≤ X(n), where each element X(i) represents the
ith order statistic. The sample DPn coefficient (2) is then calculated using sample
quantiles qn(p) where, for a given probability p, qn(p) is the hth order statistics
X(h), with h = [np] + 1 corresponding to the sample size n. The symbol [.] denotes
the integer part operator. This is expressed as follows

DP = qn(0.5) − qn(0.159)

qn(0.5)
= 1 − qn(0.159)

qn(0.5)
. (2)

Please note that the sample DP coefficient (1) is a variability measure not limited to
log-normal scenarios (Jensen and Currie 1988; Lake and Jensen 1991).

3 Dykstra–Parsons Coefficient Estimator: Parametric Scenario

Jensen and Currie (1990) show that if the probability distribution of the permeability
(random variable X) is assumed to be log-normal, it is possible to obtain a consistent
DP coefficient estimator that outperforms (in terms of bias and variance) the cor-
responding sampled DPn coefficient. More specifically, if the random variable X is
log-normal (μ,σ 2), the theoretical DP can be expressed as

DPT = 1 − eμ−σ

e−μ
= 1 − e−σ .

As expected, the theoretical DP grows with increasing values of σ . Since σ is un-
known in the expression above, it is substituted by an unbiased estimator w = s

C4 ,
where C4 ∼= 1 − 1

4n
− 7

32n2 and s is the sample (log of sample values) standard devi-
ation.
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Fig. 1 Density function for the
DP200 coefficient for 10,000
samples of size 200 from a
log-normal distribution with
μ = 800 and theoretical
DP = 0.8

The Jensen and Currie (1990) estimator denoted as DPJn is given by

DPJn = 1 − e−w.

Hence, its expected value can be approximated using the Delta-Method (Casella and
Berger 2002), by

E(DPJn) ∼= 1 − e−σ − e−σ σ 2

4n
.

Note that the expression above underestimates the theoretical DP coefficient (DPT)

and that the bias e−σ σ 2

4n
is proportional to the inverse of the sample size (n). The

standard deviation of the Jensen and Currie estimator can be approximated as

σ(DPJn) ∼= e−σ σ√
2n

.

Assuming the DPJn estimator is normally distributed, Jensen and Currie set up a 95%
confidence interval of the DPT that is equal to

DPJn ± 2e−σ σ√
2n

.

Note that this may not be aligned with the observed asymmetric distribution of the
sample DPn for high DP coefficient values (Fig. 1), even when using log-normal data.
More importantly, while the log-normal assumption has been useful, it is well-known
that it frequently does not hold (Lambert 1981; Goggin et al. 1988; Jensen and Lake
1988).

4 Dykstra–Parsons Coefficient Estimator: Non-parametric Scenario

The true reservoir permeability probability distribution is unknown and often non-
log-normal. However, it can be mistaken for log-normal based on normality tests
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(e.g., the Lilliefors test) (Lilliefors 1967), considering the small data sets typically
available. DP estimates for improving the sample DP coefficient for non-log-normal
scenarios can be obtained using the so-called Box–Cox of power transformations
(Jensen and Currie 1990); this transformation assumes the permeability distribution
as p-normally distributed (kp is normally distributed). This section presents the de-
velopment of an asymptotic distribution of the Dykstra–Parsons coefficient that over-
comes the above referenced limitation; that is, it is independent of the permeabil-
ity probability distribution. The cited development is based on two factors: (i) the
sample DP coefficient is a function of two sample central quantiles, and (ii) a re-
sult in order statistics related to the asymptotic joint normal distribution of central
quantiles. Given an ordered sample of size n of a random variable X denoted as
X(1,n) ≤ X(2,n) · · · ≤ X(n,n), a sample quantile X(i,n) is called central if as the sample
size n grows, the ratio X(i,n)/n converges to a value different from 0 or 1.

The joint distribution of two central quantiles, denoted as qn(p1) and qn(p2) with
(p1 < p2), is asymptotically normal with (i) a mean μ equal to a vector with the
corresponding quantiles of the population (David and Nagaraja 2003) as components;
that is,

μ =
[
xp1
xp2

]
,

and (ii) a covariance matrix COV/n, where

COV =
⎡
⎣

p1(1−p1)

f 2(xp1)

p1(1−p2)
f (xp1)f (xp2)

p1(1−p2)
f (xp1)f (xp2)

p2(1−p2)

f 2(xp2)

⎤
⎦ . (3)

The symbol f denotes the probability density function associated with the random
variable X. More precisely, the result states that when n → ∞, the following expres-
sion converges to a normal probability distribution

n1/2
(

qn(p1) − xp1
qn(p2) − xp2

)
⇒ N(0,COV). (4)

Note that (i) the symmetric and positive definite nature of matrix COV (3), and (ii)
the asymptotic normal distribution of the individual quantiles that results from the
bivariate normal distribution specified in (4).

The probability distribution of a linear combination of quantiles (Z)

Z = a · qn(p1) + b · qn(p2) (5)

can be derived. Following the previous result, Z is asymptotically normal, with an
expected value of

E(Z) = a · xp1 + b · xp2 (6)

and a variance Var(Z) = [a b]COV(Z)
[ a

b

]
. More precisely,

Var(Z) = a2 p1q1

nf 2(xp1)
+ 2ab

p1q2

nf (xp1)f (xp2)
+ b2 p2q2

nf 2(xp2)
. (7)

Author's personal copy



334 Math Geosci (2011) 43: 329–343

Hence, independently of the probability distribution of origin for the random variable
X (permeability), the linear combination of quantiles Z follows a normal probability
distribution with mean and variance as specified by (6) and (7). Now, the cumulative
probability distribution of the sample Dykstra–Parsons coefficient F DP(x) can be
estimated. The F DP(x) is represented by

FDP(x) = Prob(DPn < x) = Prob

(
1 − qn(0.1587)

qn(0.5)
< x

)
for 0 < x < 1,

which can be rearranged as

Prob(DPn < x) = Prob
(
0 < qn(0.1587) + (x − 1)qn(0.5)

)
. (8)

The expression in parentheses on the right-hand side of (8) is a linear combination
of quantiles, as specified in (6) with p1 = 0.1587, p2 = 0.5, a = 1 and b = x − 1.
Hence, (8) can be rewritten as

FDP(x) = Prob(DPn < x) = Prob(0 < Z).

The variable Z asymptotically is normally distributed with an expected value of

E(Z) = x1 + (x − 1)x2, (9)

where x1 = F−1(0.1587) and x2 = F−1(0.5) are the quantiles required by the theo-
retical Dykstra–Parsons, and where the DPT and the variance are equal to

Var(Z) = 0.1587 ∗ 0.841

nf 2(x1)
+ 2(x − 1)

0.1587 ∗ 0.5

nf (x1)f (x2)
+ (x − 1)2 0.5 ∗ 0.5

nf 2(x2)
. (10)

If the expected value E(Z) and square root of Var(Z) in (9) and (10) are denoted
by μz and σz, respectively, the asymptotic cumulative probability distribution of the
Dykstra–Parsons coefficient can be written as

FDPA(x) = Prob(0 < Z) = 1 − Prob(Z < 0) = 1 − Φ

(−μz

σz

)
, (11)

where Φ(·) denotes the cdf of the standard normal distribution. Note that this expres-
sion depends only on the theoretical quantiles x1 and x2, the density function values
f (x1) and f (x2), and the sample size n. The cited theoretical quantiles and density
function values could be approximated using the corresponding sample values.

Once the F DPA distribution is available, the expected value of the asymptotic DP
coefficient can be calculated using

E(DPA) =
∫ 1

0

(
1 − FDPA(x)

)
dx.

Since the F DPA(x) is available for every x, it is possible to numerically estimate
the above-referenced integral. The density function f DPA(x), however, can be ana-
lytically established directly by differentiating (11). Asymptotic confidence intervals
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Fig. 2 Cumulative density
function of the asymptotic DP
coefficient F DPA(x) (illustrative
example)

[L,U ] with a 1 − α associated probability can also be obtained as L = F−1
DPA(α/2)

and U = F−1
DPA(1 − α/2). Note that the median of the asymptotic DP coefficient is

equivalent to the DPT, since FDPA(x) = 0.5 corresponds to μz = 0 and since from
x1 + (x − 1)x2 = 0, the DPA coefficient is given by

x = x2 − x1

x2
= DPT.

4.1 Illustrative Example

Let us assume that a given reservoir has a permeability that is log-normally distrib-
uted, with a mean equal to 800 md, and a DPT coefficient equal to 0.8; the sample
size is equal to two hundred. The associated log-normal distribution parameters μ

and σ , are 5.390 and 1.609, respectively, as calculated below.

μ = Log(mean) − 0.5 ∗ σ 2 = 5.390, σ = −Log(1 − DP) = 1.609

The following five steps establish the cumulative density function of the asymptotic
DP coefficient F DPA(x) for a sample size n.

(1) Establish the quantiles corresponding to x1 and x2 associated with the 0.159 and
0.5 probabilities, as specified in the DP formula, namely: x1 = exp(μ − σ) =
43.817;x2 = exp(μ) = 219.087.

(2) Compute the log-normal density values at x1 and x2: that is, f (x1) = 0.00343,
f (x2) = 0.00113.

(3) Calculate E(Z) = x1 + x2 ∗ (x − 1) = −175.27 + 219.09 ∗ x (from (9)).
(4) Calculate Var(Z) = 828.84 − 1748.6 ∗ x + 976.49 ∗ x2 (from (10)).
(5) Since there is no analytical expression for the cdf of a normal probability dis-

tribution, the F DPA(x) is constructed point-wise using a set of values for x in
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the interval [0,1] (Fig. 2). In this example, for x = 0.75, the value of F DPA is
calculated as

E(Z) = μz = −10.955, Var(Z) = 66.639, σ (Z) = 8.163,

and from (11),

FDPA(0.75) = 1 − Φ

(
−μz

σz

)
= 1 − Φ(1.3419) = 0.090.

The reservoir permeability distribution is often unknown. In this case, sample
quantiles are used in Step 1, and the density function in Step 2 must be esti-
mated (kernel density estimation). No further changes are necessary for estimat-
ing the F DPA.

5 Case Studies

The case studies correspond to two reservoirs, one whose permeability is analytically
specified as a two-component mixture of log-normal probability distributions, and
one with real permeability sample data. In both instances, the relative performance
of the parametric and asymptotic nonparametric approaches is established firstly by
comparing the DP estimation bias, and secondly by considering different degrees
of deviation from the log-normal assumption, regardless of whether the confidence
intervals contain the theoretical DP coefficient. In addition, in the case where per-
meability is analytically specified, the effectiveness of the proposed asymptotic DP
estimator for decision-making (e.g., classifying a reservoir as low, medium, or highly
heterogeneous) is also evaluated.

5.1 Two-component Mixture of Log-normal Probability Distributions

This case study is designed to model situations where an oil reservoir is represented
by two lithofacies and where a mixture of log-normal probability distributions may
provide a reasonable approximation to characterize its permeability. The log-normal
assumption is evaluated (p-value of Lilliefors test) (Lilliefors 1967) using different
samples of the mixture distribution under alternative scenarios of reservoir maturity
levels (i.e., 100 and 200 wells). A Lilliefors test evaluates the hypothesis (null) that
the data come from a normally distributed population, when the null hypothesis does
not specify its parameters (μ,σ 2). Hence, the log-normality hypothesis can be tested
by applying a Lilliefors test on the logarithm of the permeability data, where all data
with a p-value lower than 0.05 are considered non-log-normal. Note that non-log-
normal cases can be misinterpreted as log-normal based on normality tests (e.g., the
Lilliefors test) in cases where only a small sample of the permeability distribution is
available.

The parameters of the two-component mixture of log-normals are shown in Ta-
ble 1, with the theoretical DP coefficient being equal to 0.667 (medium heterogene-
ity); see Lake and Jensen (1991) for a classification scheme based on the sample DP
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Table 1 Parameters of the
two-way mixture of log-normal
probability distributions (case
studies)

Parameter Distribution 1 Distribution 2

Permeability mean (md) 600 145

Dykstra–Parsons coefficient 0.4 0.4

Weight in the mixture (%) 60 40

Fig. 3 Empirical distribution of
permeabilities (field case study)

coefficient. The sampled density function for this mixture constructed using Parzen
windows (Parzen 1962) is, in general, similar to single log-normal probability distri-
butions. This may mislead practitioners insofar as the true nature of the permeability
statistical characterization is concerned.

5.2 Real Permeability Sample Data

The data correspond to a 2596-acre Miocene oil reservoir in western Venezuela,
which lies at a depth of 4500 feet and has an average thickness of 500 feet: as such,
it belongs to a fluvial sedimentary environment (three lithofacies) with braided chan-
nels. The data come from 93 wells, with two randomly selected permeability sample
values per well, for a total of 186 samples. All the available permeability samples
are taken as the population, and the corresponding DP coefficient is labeled as the
theoretical one. The results correspond to 20 sets of size 100. Figure 3 shows the
empirical distribution of permeability data.

6 Results and Discussion

6.1 Two-component Mixture of Log-normal Probability Distributions

Table 2 shows the number of times a DP estimate exhibits the smallest bias for one
hundred samples of different sizes (100 and 200) and the results of the Lilliefors test.
In this context, the bias is the difference between the parametric/asymptotic DP and
the theoretical DP (known in the analytical case study); ideally, a DP estimator should
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Table 2 Number of times a DP estimate exhibits the smallest bias for one hundred samples of different
sizes (100 and 200) and results of the Lilliefors test with a theoretical DP coefficient equal to 0.667

Lilliefors
Test–Null
hypothesis
(α = 5%)

Sample size

100 200

Total DP-parametric DP-asymptotic Total DP-parametric DP-asymptotic

Reject 58 4 54 93 2 91

Do not reject 42 1 41 7 0 7

Total 100 5 95 100 3 97

Fig. 4 Confidence intervals
associated with the asymptotic
DP (a) and parametric (b)
estimates for a sample of size
100. The vertical line represents
the theoretical Dykstra–Parsons
coefficient. Case study: two-way
mixture of log-normal
probability distributions

be unbiased. In general, for samples of size 100, the DPA estimates were close to the
theoretical one, with the median of the differences between the theoretical DP value
and the DP-parametric and asymptotic estimates being approximately 0.08 (biased)
and 0 (unbiased), respectively. Similar results were obtained for the larger sample
size (200). Even though the permeability distribution of interest is not log-normally
distributed, in several instances the log-normal hypothesis could not be rejected; in
such instances the DPA estimates were always closer to the theoretical one than the
parametric DP. Hence, not rejecting the log-normal hypothesis is not a sufficient con-
dition for using the parametric DP approach: the permeability distribution may not
be log-normally distributed, in which case and the asymptotic DP estimator may be
a better choice.

For a sample of size 100, Figs. 4(a) and 4(b) exhibit the 95% confidence intervals
associated with the DP asymptotic and parametric estimates, respectively. The latter
only included the theoretical value of the DP coefficient (0.667) in three instances,
while the former did on all but three occasions. Increasing the sample size to 200
yielded DP parametric estimates that were further away from the theoretical value.
Sample independent results were also obtained using population parameters for com-
puting the DP estimates; that is, quantiles and density function values (asymptotic),
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Fig. 5 Asymptotic cumulative
probability distribution of the
Dykstra–Parsons coefficient and
the corresponding empirical
CDF for 1000 simulations of
sample sizes of 100 (a) and
400 (b). Case study: two-way
mixture of log-normal
probability distributions

(a)

(b)

and standard deviation (parametric). The lower and upper limits for the asymptotic
DP confidence interval were 0.557 to 0.746, which was close to the theoretical one
(0.573 to 0.747). In contrast, the confidence interval associated with the parametric
DP approach (0.528 to 0.631) is biased to the left and does not include the theoretical
DP coefficient (0.667). Similar results were obtained for the larger sample size.

Figure 5 shows the excellent agreement between the asymptotic cumulative prob-
ability distribution of the DP coefficient and the corresponding empirical cdf, for
1,000 simulations of sample sizes of 100 (Fig. 5(a)) and 400 (Fig. 5(b)). This agree-
ment opens the possibility of using the asymptotic F DPA(x) to help support decisions
related to reservoir classification. For example, the cdf could be used for screening
purposes; to establish if a more detailed study is justified; or to classify the reser-
voir as low, medium, or highly heterogeneous according to the DP estimate value
(Lake and Jensen 1991). A common reservoir classifying scheme labels a reservoir
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Fig. 6 Average probability of
an asymptotic Dykstra–Parsons
coefficient higher than 0.7
corresponding to 10,000
simulations. Case study:
two-way mixture of log-normal
probability distributions

as medium or highly heterogeneous according to whether the DP estimate is within
the 0.5 < DP < 0.7, or DP > 0.7 intervals, respectively. For this case, the DP co-
efficient is known (0.667) and is close to the classification boundary value of 0.7:
accordingly, it would be relevant to investigate the probability of an asymptotic DP
coefficient larger than 0.7 (hence, wrongly classifying it as highly heterogeneous), in
the case that the DP coefficient is 0.667. Figure 6 shows the results corresponding to
10,000 simulations and different sample sizes.

Even though the theoretical DP coefficient is close to the classification frontier
(0.667 in comparison with 0.7), the average probability of an asymptotic Dykstra–
Parsons coefficient larger than 0.7 is about 0.3 for a sample size of 100 and, as ex-
pected, it significantly decreases with larger sample sizes. The cited average includes
the probability of the asymptotic DP coefficient of each of the samples being higher
than 0.7; this probability is computed using the asymptotic cumulative probability
distribution (11). On a separate note, among the 10,000 simulations, the proportion
of samples with asymptotic Dykstra–Parsons coefficients actually exceeding 0.7 was
only about 20% (classification error) for the sample size equal to 100, and it decreased
to about 9% and 4% for the sample sizes of 300 and 500, respectively.

6.2 Real permeability sample data

The DP-parametric estimator exhibits a significant bias with a median value of ap-
proximately 0.13 and with the ideal value of zero well outside the sample values; in
contrast, the DP non-parametric estimator shows a bias with a median close to zero
and with the interquartile interval including the zero value (Fig. 7). In all instances,
the DP-asymptotic was closer to the theoretical DP coefficient (0.667) and the log-
normal hypothesis was rejected using the Lilliefors test with a 5% significance level,
confirming the potential of the DP-Asymptotic estimator for real case scenarios.

None of the DP-parametric confidence intervals include the theoretical DP coeffi-
cient (Fig. 8(b)) while the opposite result is observed for the asymptotic DP estimates
(Fig. 8(a)). In the latter case, note how centered the theoretical DP coefficient is with
respect to the confidence intervals.
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Fig. 7 Differences between the
true DP coefficient and the
estimators. Sample size: 20

Fig. 8 Confidence intervals
associated with the asymptotic
DP (a) and parametric (b)
estimates for a sample of size
20. The vertical line represents
the theoretical DP coefficient

(a)

(b)
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7 Conclusions

This paper presented the development of an asymptotic distribution of the Dykstra–
Parsons coefficient that is independent of the permeability probability distribution.
The effectiveness (through bias and confidence intervals) of the proposed asymptotic
DP coefficient is demonstrated by comparing the results with those obtained using
the DP parametric approach (log-normal distribution) under different scenarios of
reservoir maturity levels (i.e., number of wells).

The results show that in the vast majority of the case studies, the asymptotic DP
coefficient outperformed the parametric counterpart, independently of whether or not
the log-normal probability density function assumption held (with α = 5%); in par-
ticular, the asymptotic DP coefficient resulted in a significant reduction of the bias
and confidence intervals when including the theoretical DP coefficient. In addition,
an excellent agreement was observed between the asymptotic cumulative distribution
of the DP coefficient and the corresponding empirical distribution for sample sizes
as low as 100, which makes it possible to classify reservoirs according to their DP
coefficient with high success rates.

Real permeability data may frequently reject the log-normal hypothesis (e.g.,
Lilliefors test with a 5% significance level), which confirms the potential of the DP-
asymptotic estimator for real case scenarios. The DP-asymptotic estimator coeffi-
cient can easily be implemented as a computational aid and has the potential to be
successfully incorporated in the workflow of reservoir engineers in view of quanti-
fying/classifying reservoir heterogeneity without making any assumptions about the
permeability probability distribution.
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