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Abstract In the context of surrogate-based optimization (SBO), most designers have still
very little guidance on when to stop and how to use infill measures with target requirements
(e.g., one-stage approach for goal seeking and optimization); the reason: optimum estimates
independent of the surrogate and optimization strategy are seldom available. Hence, optimiza-
tion cycles are typically stopped when resources run out (e.g., number of objective function
evaluations/time) or convergence is perceived, and targets are empirically set which may
affect the effectiveness and efficiency of the SBO approach. This work presents an approach
for estimating the minimum (target) of the objective function using concepts from extreme
order statistics which relies only on the training data (sample) outputs. It is assumed that the
sample inputs are randomly distributed so the outputs can be considered a random variable,
whose density function is bounded (a, b), with the minimum (a) as its lower bound. Speciti-
cally, an estimate of the minimum (a) is obtained by: (i) computing the bounds (using training
data and the moment matching method) of a selected set of analytical density functions (cata-
log), and (ii) identifying the density function in the catalog with the best match to the sample
outputs distribution and corresponding minimum estimate (a). The proposed approach makes
no assumption about the nature of the objective functions, and can be used with any surrogate,
and optimization strategy even with high dimensional problems. The effectiveness of the pro-
posed approach was evaluated using a compact catalog of Generalized Beta density functions
and well-known analytical optimization test functions, i.e., F2, Hartmann 6D, and Griewangk
10D and in the optimization of a field scale alkali-surfactant-polymer enhanced oil recovery
process. The results revealed that: (a) the density function (from a catalog) with the best
match to a function outputs distribution, was the same for both large and reduced samples,
(b) the true optimum value was always within a 95% confidence interval of the estimated
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minimum distribution, and (c) the estimated minimum represents a significant improvement
over the present best solution and an excellent approximation of the true optimum value.

Keywords Minimum estimates from sample data - Extreme value theory - Setting targets -
Surrogate-based optimization

1 Introduction

Assessing the merit of another cycle in surrogate-based optimization for engineering design
versus accepting the present best solution [1] is an issue of considerable interest in the opti-
mization of complex engineering systems in the aerospace [2—5], automotive ([6,7]) and oil
industries ([8,9]); review papers on the subject of surrogate-based optimization are those of
Li and Padula [4], Queipo et al. [5], Wang and Shan [10], and Forrester and Keane [11].
Each cycle consists of the analysis of a number of designs, the fitting of a surrogate, optimi-
zation based on the surrogate, and exact analysis at the design obtained by the optimization.
The cycles are typically stopped when resources run out (e.g., number of objective function
evaluations/time) or convergence is perceived, such as when the latest improvement repre-
sents a particular fraction of the range of the objective function evaluations. On the other
hand, promising infill measures such as one-stage approach for goal-seeking and optimiza-
tion [12,13] have limited their application because the targets (goals) are empirically set with
significant uncertainty. Hence, considering optimum estimates are seldom available, most
designers have still very little guidance on when to stop and how to set up the targets (goals).

Jones et al. [14] using the so called expected improvement (EI) as infill measure stopped
the search when the maximum EI was less than 1% of the present best solution. Sasena et al.
[15] compared alternative infill sampling plans using a generalized EI measure while stopping
the cycles after a fixed number of objective function evaluations. Sobester et al. [16] used
a weighted EI criterion and also limited the cycles to a fixed nuber of objective function
evaluations. Huang et al. [17] presented a so called augmented EI to address stochastic black
box systems and used as stopping criterion a tolerance for the ratio between the maximal EI
and the active span of the responses. Alternatively, Apley et al. [18] in the context of robust
design gave guidelines for additional cycles depending on whether or not the analytical pre-
diction intervals for potential designs overlapped. Forrester and Jones [19] proposed an EI
measure with no user defined parameters and stopped the cycles after a particular target is
reached. These works consider the deployment of a single point in each additional cycle.
In contrast, clustered approaches for the deployment of multiple points in additional cycles
were conducted for probability of improvement (PI) as infill measure [12] and generalized
EI [20]; the former did not specify a stopping criterion while the latter used a fixed number
of objective function evaluations. Using a fixed number of cycles [21] gave results for both
EI and PI as infill sampling criteria also allowing for multiple points in each additional cycle;
two heuristics were used for the EI calculations. Note that, in general, the stopping criteria
were not based on optimum estimates.

In the one-stage approach for goal-seeking the covariance parameters in Gaussian Pro-
cess (GP) modeling are jointly estimated (maximum likelihood) with the location at which
a particular goal (target) may be achieved. An extension of this idea for optimization essen-
tially establishes as infill criterion the goal seeking approach for multiple targets. Note that,
in contrast to traditional GP-based optimization, the covariance model estimation is cou-
pled with the optimization process (one-stage) and can be more effective when the train-
ing data is sparse and misleading. A discussion of these approaches for GP and radial
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basis functions, can be found in [12] and [13], respectively; in all instances, targets where
empirically set which may affect the effectiveness and efficiency of the surrogate-based
optimization.

On the other hand, in surrogate-based optimization, assuming the initial design of
experiment (inputs) is a random sample, the training data outputs can be considered
a random variable. In that context, there are asymptotic distributions for the extremes
(minimum/maximum) of a random variable (with unknown distribution) [22-24], but esti-
mating their parameters require observations corresponding to the minimum/maximum of
several samples, which are rarely available in surrogate-based optimization. In contrast,
this work estimates the minimum (target) of an objective function using a single sam-
ple, i.e., training data outputs, assuming a particular density function. An estimate of
the minimum (a density function bound) is then obtained through the moment matching
method. The assumption imposed on the sample inputs is not restrictive since the initial
design of experiment (DOE) for surrogate modeling and optimization aims to distribute
the sample points uniformly in the design space (to reduce bias errors). The uniformity
property in designs is sought by, for example, maximizing the minimum distances among
design points [25], or by minimizing correlation measures among the sample data [26,27].
Practical implementation of these strategies includes Latin Hypercube sampling (LHS,
e.g., [28]) and OA-based LHS [29,30] and other optimal LHS schemes [31,32]. Note
that in the proposed approach: (i) the minimum of the objective function of interest is
estimated at the beginning of the surrogate-based optimization process, and (ii) except
for continuity, no assumption is made about the nature of the objective functions, and
can be used with any surrogate, and optimization strategy even with high dimensional
problems.

The remainder of the paper is structured as follows: problem statement (Sect. 2), solution
approach (Sect. 3), case studies (Sect. 4), results and discussion (Sect. 5), and summary and
conclusions (Sect. 6).

2 Problem definition

The problem of interest can be stated as: given a sample of model input/output pairs, estimate
the minimum of the model output (objective function) which relies only on the training data
(sample) outputs. It is assumed that the model output is a scalar, and the sample inputs are
randomly distributed so the outputs can be considered a random variable.

3 Proposed approach

Given a sample of points, an estimate for the minimum of a function is obtained through the
following three steps:

A. Generate a catalog with a variety of bounded («, b) analytical density functions that
may provide a good fit to training data (outputs) empirical density function,

B. For each of the density functions in the catalog, estimate its bounds (a, b) using the
moment matching method, and,

C. Identify the density function from the above-referenced catalog with the best match to
the sample outputs distribution; the lower bound (a) for the identified density function
is the minimum estimate sought.
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Table 1 Density and cumulative density functions for the Beta (p, ¢) distribution defined in the interval

Pl (1—x)a~!

Probability density function fBeta X1, q) = 8o —
Cumulative distribution function Fpeta(X|p. q) = W;_zﬂ f(}r (=11 =)=y

With B(p. q) = fg 1P~1(1 = 4~ 1as

Details of each of these steps are given below.

3.1 Generate a catalog with a variety of bounded (a, ) analytical density functions that
may provide a good fit to training data (outputs) empirical density function

Ideally, the catalog should provide a compact description of a whole range of density func-
tions. This can be accomplished using a Generalized Beta (p, q. a, b) density function for
a random variable X (objective function values) defined in the interval (a, b); where X is

X—a
b—a

cally, different shapes of the density function can be identified modifying the p and g shape

considered a Generalized Beta (p,q,a.b) if Z = ( ) is a Beta (p, g). More specifi-

parameters in a Beta (p, q) density function for random variable Z = (2(:2!) defined in the

interval (0,1); see Table 1. Note that since Z = i_‘j

(p,q,a,b) and Beta (p, q) density functions share the same shape, hence the latter can be
used to select proper p, ¢ parameters (without knowing the bounds «, b). Figure 1 shows
a catalog with nine (9) different compactly specified density functions that are expected to
match a variety of empirical density functions for the objective function values (X). Note
that shape parameters (p, ¢) equal to [1,1] resemble a uniform distribution, simultaneously
increasing the values of p, ¢ modifies the shape to a Gaussian-like density function (i.e., [3,
31, [3, 5]), and a biased density function to the left or right can be obtained with ¢ > p (i.e.,
[1,2.5],[1,5],[2.5,5]) and p > ¢ (i.e., [2.5, 1], [5, 1], [5, 2.5]), respectively.

) is a linear transformation, the Beta

3.2 For each of the density functions in the catalog, estimate its bounds (a, b) using the
moment matching method

It includes solving a system of equations for the bounds (a, b) of each of the analytical
density functions in the catalog (specified in step A). The system is obtained equating the
expected value for the minimum and maximum (B.1), with the sample outputs minimum and
maximum, respectively. Note that selecting Generalized Beta (p. g, a, b) density functions
for the catalog makes the above-referenced system of equations linear for the bounds (a, b)
with analytical solutions (B.2).

3.2.1 Expected value for the minimum and maximum

Given a random sample X1, ..., X of a random variable X with density and cumulative
distributions f(x) and F (x), respectively, the distribution of the maximum, i.e., max(X) =
max (X1, ..., Xy) and minimum values, i.e., min(X) = min(Xy, ..., Xn) is expressed as
Froax(®) = F)V and Fpin(x) = 1 — (1 — F(x))", respectively (See [33]). The corre-
sponding density functions are:

foax(x) = NFO)N L £ (x)
fumin(x) = N1 = F)V = f(x)
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Fig. 1 Catalog of bounded analytical density functions (a) and corresponding cumulative distributions (b)
using Beta (p, ¢q) distributions with selected values for the shape parameters p and ¢. Note the variety of
density functions available

For bounded function outputs [a, b], hence, the expected value for the maximum can be
calculated as:

b b b
E (max(x)) = / X finax (V) dx = X Fraax (1) [ — / Finax(x)dx = b — / F)Ndx

And the expected value for the minimum can be shown to be:
b
E (min(x)) = a + / (1= Fx)N dx
a

On the other hand, for Generalized Beta (p, ¢, a, b), its cumulative distribution, FGperq (X|p,
q.a.b), can be shown to be equal to Fp.:q(z|p, q) when z = (ﬁ ;

values of interest, i.e., F'(max(x)) and E (min(x)), can be expressed as:

hence, the expected
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b
E(max(x)) = b — / FGBeia(Xp. ¢, a,b)"dx = b — (b —a)dy
da
where dy = [ Fgera(zlp. @)V dz
b
E (min(x)) = a + / (I = Fgpera(x|p. q.a, b)) dx = a + (b — a)ey

a

1
where ey = [j (1 — Fpera(zlp, 9)" dz.
Note that ¢y and dy are one dimensional integrals (numerically easy to solve) depending
only on the shape parameters (p, ¢) of the Beta (p, ¢) distribution under consideration.

3.2.2 System of equations for the density function bounds and its analytical solution
Equating the expected value for the minimum/maximum (B.1) and the sample output mini-
mum (xpin) and maximum (xpax), the following linear system of equations is obtained:

[Xmax =max ({x1,.xj....,x}) =b— (b—a)dy
Xmin = min ({x1,.xj, ..., x5, }) =a+ (b —a)cy

Solving the above system of equations for the bounds (a, b), the solution can be found to be:

Xmax — Xmin
b =xpax +dy ———
1 —cy —dn

Xmax — Xmin

a = Xmin —CN————
min N 11— N — dN

Note that the bounds (a, ) are essentially estimates for the model output (objective function)

minimum and maximum, respectively, obtained using: (1) the minimum and maximum of the

sample outputs (Xmpin and Xpax), and (ii) the density function, i.e., Beta (p. ¢) distribution

(through ¢ and dy) under consideration.

3.3 Identify the density function in the catalog with the best match to the sample outputs
distribution and corresponding minimum estimate (a)

The best match refers to the analytical density function (Generalized Beta (p, ¢, a. b)) with
the lowest maximum absolute difference’ (Dmax) between its cumulative distribution and the
corresponding to the sample outputs. The density function of interest is selected from the cat-
alog of Generalized Beta (p, q, a, b) distributions, with p, ¢ specified in step A (Fig. 1), and
bounds «, b obtained in step B. The minimum estimate of interest («) is the one associated
with the density function with the best match in the catalog.

4 Case studies

The proposed approach for solving the problem of interest, is evaluated using three well-
known analytical optimization test functions [34-36]: F2 (Fig. 2), Hartmann 6D, Griewangk

1 In the spirit of the statistic used in the Kolmogorov-Smirnov (nonparametric) test for the equality of con-
tinuous, one-dimensional probability distributions.
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Fig. 2 F2 test function

10D (Fig. 3) and in the optimization of a field scale alkali-surfactant-polymer (ASP) enhanced
oil recovery (EOR) process [37—40].

Three sample sizes in the order of 10 - k£ [14] samples are considered, with k£ being
number of input dimensions. For each case study and sample size, the effect of: (i) DOE,
i.e., a hundred (100) latin-hypercubes, and (ii) noise, uniformly distributed with two levels
(1 = 0.1, p = 0.2); is also evaluated. The noisy test functions are specified by the follow-
ing expression: F (x) - [l +aU — 1/2)], where F is the test function under consideration and
U is a uniform distribution in the interval (0, 1).

4.1 F2 [34]

M) - co (ﬂ ‘x2) —10=x =10 Range =[~1, 1]

S\l ) —20<x, <20 Jopt = [=1, =1, —1]

S(x1, x2) = sin (ﬂ
xﬂpt:[(_67 0)7 (67 _16)7 (67 16)]

4.2 Hartmann 6D [35]

4 6
. N o 2\ 0<x; <1 Range =[-3.3224.0]
f(X)——Z;LleXp —Z;UI'](-X.]_pl]) forj:l,2,...,6
i= j=
10 3 17 3517 8 1
A 0.05 10 17 0.1 8 14 112
| 3351710178 |'°7 |3
17 8 0.05 10 0.1 14 32

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Fig. 3 Two-dimensional representation of the Griewangk 10D test function

fopt = —=3.3224  xop = [0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573]

4.3 Griewangk 10D [36]

10 2 10

. X: Xi .

fo =1+ —’—Hcos(—_) — 600 <x; <600 for j=1,2,....10
<4000 L1 Vi

Range = [0,900], fopt =0, xopt = Oin every dimension
4.4 Alkali-Surfactant-Polymer (ASP) EOR? process optimization [37—40]

The problem of interest is to find optimum estimates for cumulative oil production in a ASP
flooding pilot given a range of values (Table 2) for the following design variables: concentra-
tion of alkaline, surfactant, polymer, and ASP slug size (expressed in the form of the injection
time). The cumulative oil production is calculated at 487 days expressed as a percentage of
the original oil in place (OOIP).

As illustrated in Fig. 4, the ASP flooding pilot has an inverted five-spot pattern and a total
of 13 vertical wells, 9 producers and 4 injectors. The reservoir is at a depth of 4,150 ft., has an
average initial pressure of 1,770 psi, and the porosity is assumed to be constant throughout
the reservoir and equal to 0.3. The numerical grid is composed of 19 x 19 x 3 blocks in the x,
y and z directions. The OOIP is 395,427 bbls, the crude oil viscosity is 40 cp, the initial brine

2 Enhanced Oil Recovery.
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Table 2 Design variable restrictions—ASP-EOR case study

Design variable Range Units
Min. Max.
Alkalinc concentration (Nay CO3) 0 0.5898 meq/ml
Surfactant concentration 0.001815 0.01 Vol. fract.
Polymer concentration 0.0487 0.1461 wit%
Injection time 111 326 Days
[o e
3 12) 0
1@ ()
8| @ Producer
1
0 Injector
() 4
7 [
O 623.2 ft
¢ _l
5 2 1
0 0 o
I
I

y
| |<7 623.2 ft —>|

X

Fig. 4 Well pattern illustration—ASP-EOR case study

salinity is 0.0583 meq/ml and the initial brine divalent cation concentration is 0.0025 meq/ml.
This is the reference configuration whose details can be found in the sample data archives of
the UTCHEM [41] program.

Three flowing phases and eleven components are considered in the numerical simulations.
The phases are water, oil and microemulsion, while the components are water, oil, surfactant,
polymer, chloride anions, divalent cations (Ca++, Mg++), carbonate, sodium, hydrogen ion,
and oil acid. The ASP interactions are modeled using the reactions: in situ generated surfac-
tant, precipitation and dissolution of minerals, cation exchange with clay and micelle, and
chemical adsorption. Note the detailed chemical reaction modeling, and the heterogeneous
and multiphase petroleum reservoir under consideration.

4.5 Performance criteria

For a given case study, these are: (i) the Beta (p, q. a, b) analytical density function with the
minimum Dpax (best match) should have the same shape parameters (p, ¢) for both reduced
and larger sample sizes, with reasonable dispersion for the Dy« distribution. In addition, it
is desirable that performance (relative error) does not deteriorate significantly when select-
ing an analytical density function with Dy, distribution similar to the one exhibited by
the best matching density function (robustness); relative error is calculated as the difference
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{1.0, 1.0} {1.0,2.5) 2.5, 1.0)
{5.0, 5.0) {1.0,5.0) {5.0,1.0)
{3.0, 3.00 (2.5, 5.0 {5.0,2.5)

Fig.5 Catalog of Beta(p, g) density functions used for obtaining the optimum estimates of the case studies.
The shape parameters (p, ¢) are also shown

between the estimated minimum and the true optimum value as a fraction of the function
range, (ii) the true optimum should be within a 95% confidence interval of the estimated min-
imum; the bounds of the confidence intervals correspond to the 0.025 and 0.975 quantiles
of the estimated minimum empirical distribution (statistical soundness), (iii) the estimated
minimum should be a good approximation (low relative error) for the true optimum, and a
meaningful improvement over the sample outputs minimum (present best solution) even for
modest sample sizes (accuracy), and iv) the minimum estimates should exhibit statistically
significant improvements (median and dispersion of the relative error) for larger sample sizes
(consistency).

4.6 Catalog of density functions (Beta (p, ¢)) to match training data (outputs) empirical
density function

Figure 5 illustrates the catalog with nine (9) density functions used for obtaining the optimum
estimates of the case studies. Note the whole range of density functions available and the
compact representation through the shape parameters [p. ¢], i.e., [1, 2.5], [1, 5], [2.5, 1], [5,
11, [1, 11, [3, 31, [5, 51, [2.5, 51, [5, 2.5].

5 Results and discussion

The performance of the proposed approach for optimum estimation is discussed considering

the performance criteria specified in the previous section:

— Robustness: Figs. 6, 7, 8 and 9 show, for each case study, the boxplots3 of the Dpax
empirical distribution for a hundred LHS with three increasingly bigger sample sizes.

3Ina boxplot, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually.
Points are drawn as outliers if they are larger than g3 + 1.5(q3 — ql) or smaller than q1 — 1.5(q3 — ql), where
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Fig. 6 Boxplots of the Dyax corresponding to each of the Beta distributions in the catalog for a 100 LHS
with samples of size (a) 15, (b) 20 and (c¢) 40. An arrow points to the Beta distribution with the best match to
the sample outputs distribution. The parameters (p, ¢) and shape of the Beta distributions in the catalog are
depicted below each of the columns of boxplots—F2 case study

The Dpax distributions exhibit significant differences depending on the shape param-
eters (p, ¢). Specifically, the best matching Generalized Beta (p, ¢) density function
(minimum median Dp,x) in the catalog:

i. Hadthe same shape parameters (p, ¢) forall sample sizes, but different ones depend-
ing on the case study (Table 3), and,

ii. Exhibited a coefficient of variation (robust estimates*) for Dy, in the order of 20—
30% and 30—40% for the case studies with up to six dimensions and ten dimensions
(Griewangk 10D), respectively; the median and coefficient of variation for Dyax,
was relatively insensitive to the sample sizes under consideration, and,

iii.  In those instances where the second best matching density function had the value
for the median of D,k close to the best matching one (i.e., ASP-EOR and Griew-
angk 10D), the corresponding relative errors for minimum estimates deteriorate, but
these errors remained lower or equal to 10% for all sample sizes, e.g., 3% versus
8% (ASP-EOR, sample size 40), and 2% versus 7% (Griewangk 10D, sample size
150).

All of the above confirms the effectiveness of Dy« for selecting best matching density
functions, and justifies the wide variety of functions available in the catalog.

— Statistical soundness: In all case studies, even in the ten dimensional one, the true opti-
mum value was always within a 95% confidence interval of the estimated minimum
distribution corresponding to a hundred LHS designs (even for reduced sample sizes); in
fact, p-values for the minimum were, in general, well above (greater than 0.5 in all but
three instances) the 0.05 significance level used as a threshold to reject the null hypothesis

Footnote 3 continued

ql and g3 are the 25th and 75th percentiles, respectively. The default of 1.5 corresponds to approximately
+/—2.7 6and 99.3% coverage if the data are normally distributed. The plotted whisker extends to the adjacent
value, which is the most extreme data value that is not an outlier.

4 A robust estimate of the coefficient of variation. i.e., (L — (L — 0))/1, can also be written as [d)_1 (pp) —
o1 (pp1/ o1 (p2),if ¢~ Ldenotes the inverse cdf of a Normal probability distribution, and p; and p, represent
O — 0) 2~ 0.159 and () = 0.5, respectively.
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Fig. 7 Boxplots of the Dyyx corresponding to each of the Beta distributions in the catalog for a 100 LHS

with samples of size (a) 30, (b) 60 and (¢)

120. An arrow points to the Beta distribution with the best match

to the sample outputs distribution. The parameters (p, ¢) and shape of the Beta distributions in the catalog are
depicted below each of the columns of boxplots—Hartmann 6D case study
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Fig. 8 Boxplots of the Dmgx corresponding to each of the Beta distributions in the catalog for a 100 LHS
with samples of size (a) 120, (b) 150 and (¢) 300. An arrow points to the Beta distribution with the best match
to the sample outputs distribution. The parameters (p, ¢) and shape of the Beta distributions in the catalog are
depicted below each of the columns of boxplots—Giewangk 10D case study

(i.e., true minimum is a sample of the estimated minimum distribution) (Figs. 10, 11, 12

and 13).

from a hundred LHS designs

Accuracy and consistency: In each of the case studies, the estimated minima obtained

(Figs. 14, 15, 16 and 17):

i. Represented an excellent approximation of the true optimum value considering the
median of the relative error was lower than seven percent (7%), even for reduced
sample sizes and high dimensional problems (Table 4),

ii.

Showed to be significantly closer to the minimum (maximum relative error of 6.5%)

than the present best solution (maximum relative error of 49.9%),

1ii.
iv.
sizes.
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Fig. 9 Boxplots of the Dyax corresponding to each of the Beta distributions in the catalog for a 100 LHS
with samples of size (a) 20 (b) 40 and (¢) 80. An arrow points to the Beta distribution with the best match to
the sample outputs distribution. The parameters (p, ¢) and shape of the Beta distributions in the catalog are
depicted below each of the columns of boxplots—ASP-EOR case study

Table 3 Best matching Beta (p, ¢) density function for each case study and sample sizes

Case study Best matching Beta (p, q) density function Sample sizes
1010
F2 15/20/40
5.0,1.0
Hartmann 6D 30/60/120
1ol 5100
Griewangk 10D 120/150/300
e
(e85
ASP-EOR 20/40/80
T

For all case studies and sample sizes, the best matching density function remained unal-
tered for the noisy version of the test functions, and the differences in the relative error of
the minimum estimation, with (noise 10%, «1; 20%, «2) and without noise, were statis-
tically insignificant; see, for example, the results corresponding to Griewangk 10D with
a sample size of 150 (Fig. 18).

6 Conclusions

This work presents an approach for estimating the expected value for the minimum (target)
of an objective function at a given cycle using concepts from extreme order statistics. It is
assumed that the sample inputs are randomly distributed so the outputs can be considered
a random variable, whose density function is bounded (a, b), with the minimum being its
lower bound. Specifically, an estimate of the minimum (a) is obtained by: (i) computing the
bounds (using training data and the moment matching method) of a selected set of analytical
density functions (catalog), and (ii) identifying the density function in the catalog with the
best match to the sample outputs distribution and corresponding minimum estimate (a).
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Fig. 10 Empirical distribution of estimated minimum values with an indication of the true minimum value
for samples of size (a) 15, (b) 20 and (¢) 40. Ninety five percent confidence intervals and p-values are also
shown—F2 case study
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Fig. 11 Empirical distribution of estimated minimum values with an indication of the true minimum value
for samples of size (a) 30, (b) 60 and (¢) 120. Ninety five percent confidence intervals and p-values are also
shown—Hartmann 6D case study

The eftectiveness of the proposed approach was evaluated using a compact catalog of
Generalized Beta density functions and well-known analytical optimization test functions,
i.e., F2, Hartmann 6D, and Griewangk 10D and in the optimization of a field scale alkali-
surfactant-polymer (ASP) enhanced oil recovery (EOR) process. In this context:
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Fig. 12 Empirical distribution of estimated minimum values with an indication of the true minimum value
for samples of size (a) 120, (b) 150 and (c) 300. Ninety five percent confidence intervals and p-values are also
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Fig. 13 Empirical distribution of estimated minimum values with an indication of the true minimum value
for samples of size (a) 20, (b) 40 and (c) 80. Ninety five percent confidence intervals and p-values are also

shown—ASP-EOR case study

e It was possible to setup a compact catalog with a variety of density functions (nine) by
moditying the shape parameters (p, q) of a Beta (p, q) distribution. While the cited cat-
alog includes the most anticipated density function shapes (e.g., uniform, Gaussian like,
biased to the left or right), the catalog can evolve to meet the requirements of empirical

sample outputs distribution related to particular problems.
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Fig. 14 Boxplots of the relative error for: (¢) sample minimum value (PBS) and estimated minimum value
using a sample of size () 15, (¢) 20 and (d) 40—F2 case study
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Fig. 15 Boxplots of the relative error for: (@) sample minimum value (PBS) and estimated minimum value
using a sample of size (b) 30, (¢) 60 and (d) 120—Hartmann 6D case study

EI[I- 1
g i =
& 5l s 15
2
.i L‘_ _‘_J
;- EOREITRTNOUTNE.. St NER
£ |
5k A

#

J C ]
e iy IS = oy R
[ |
| SR M

(8)PB5-120 samplas (D)120 samples  (C) 150 samples (]300 samples

Fig. 16 Boxplots of the relative error for: («) sample minimum value (PBS) and estimated minimum value
using a sample of sizc (b) 120, (¢) 150 and (d) 300—Gricwangk 10D casc study
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Fig. 17 Boxplots of the relative error for: (¢) sample minimum value (PBS) and estimated minimum value
using a sample of size () 20, (c) 40 and (d) 80—ASP-EOR case study

Table 4 Relative errors for case studies and sample sizes

Case study Sample size Relative error (median) [%]
Proposed approach Present best solution
(sample size)
F2 15 20 40 3.1 1.3 0.8 3.4(15)
Hartmann 6D 30 60 120 6.2 6.5 0.3 49.9 (30)
Gricwangk 10D 120 150 300 22 1.5 1.3 12.2 (120)
ASP-EOR 20 40 80 34 2.6 3.1 12.0 (20)
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Fig. 18 Boxplots of the relative error of the minimum estimation (this work) considering: (a) no noise, (b)
noise 10% (1), and (c) noise 20% (a7), for a sample size of 150—Griewangk 10D case study

e The process for selecting the density function that best matches the function outputs dis-
tribution was shown to be robust, i.e., the best matching density function in the catalog
was the same for all sample sizes, but different depending on the case study.

e The true optimum value was always within a 95% confidence interval of the estimated
minimum distribution with p-values, in general, greater than 50% for all sample sizes,
even for high dimensional problems (up to 10D).
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The estimated minimum represented an excellent approximation of the true optimum
value even for reduced sample sizes with significant improvements over the present best
solution, and did not show to be significantly affected by the curse of dimensionality.

The proposed approach is independent of the surrogate and optimization strategies, can be
tailored to fit a variety of risk attitudes and design environments, and holds promise to be
useful in setting targets and assessing the value of another cycle in surrogate-based optimiza-
tion. Future work should focus on strategies for updating targets throughout surrogate-based
optimization cycles where the samples of the inputs may no longer be considered random.
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